

AreaList Pro

User Manual

™

AreaList Pro
User Manual

©1990-1996 Foresight Technology, Inc. All Rights Reserved.
Published World-Wide by Foresight Technology, Inc.

Foresight Technology, Inc.
4100 International Plaza

Suite 538
Fort Worth, TX 76109

AreaList Pro

Written by: Steve Antonakes
Manual: Rich Gay and Steve Antonakes

™

Software License and Limited Warranty

Software License and Limited Warranty

PLEASE READ THIS LICENSE CAREFULLY BEFORE USING THE SOFT-
WARE CONTAINED ON THE DISKS. BY USING THE SOFTWARE, YOU
AGREE TO BECOME BOUND BY THE TERMS OF THIS AGREEMENT,
WHICH INCLUDES THE SOFTWARE LICENSE AND WARRANTY DIS-
CLAIMER (collectively referred to herein as the “Agreement”). THIS
AGREEMENT CONSTITUTES THE COMPLETE AGREEMENT BETWEEN
YOU AND FORESIGHT TECHNOLOGY, INC. IF YOU DO NOT AGREE TO
THE TERMS OF THIS AGREEMENT, DO NOT USE THE SOFTWARE AND
PROMPTLY RETURN THE PACKAGE FOR A FULL REFUND.
1. Ownership of Software. The enclosed manual and computer
programs (“Software”) were developed and are copyrighted by
Foresight Technology, Inc. (“Foresight”) and are licensed, not
sold, to you by Foresight for use under the following terms, and
Foresight reserves any rights not expressly granted to you. You
own the disk(s) on which any software is recorded, but Foresight
retains ownership of all copies of the Software itself. Neither the
manual nor the Software may be copied in whole or in part
except as explicitly stated below.

2. License. Foresight, as Licensor, grants to you, the LIC-
ENSEE, a non-exclusive, non-transferable right to use this Soft-
ware subject to the terms of the license as described below:

a. You may make backup copies of the Software for your use
provided they bear the Foresight copyright notice.

b. You may use this Software in an unlimited number of cus-
tom or commercial databases or applications created by the
original licensee. No additional product license or royalty is
required.

3. Restrictions. You may not distribute copies of the Software to
others (except as an integral part of a database or application
within the terms of this License) or electronically transfer the
Software from one computer to another over a network. You may
not distribute copies of the Software as an integral part of a
development shell or non-compiled commercial data base. The
Software contains trade secrets and to protect them you may not
decompile, reverse engineer, disassemble, or otherwise reduce
the Software to a human perceivable form. YOU MAY NOT
MODIFY, ADAPT, TRANSLATE, RENT, LEASE, LOAN OR
RESELL FOR PROFIT THE SOFTWARE OR ANY PART
THEREOF.

4. Termination. This license is effective until terminated. This
license will terminate immediately without notice from Foresight if
v

Software License and Limited Warranty

you fail to comply with any of its provisions. Upon termination
you must destroy the Software and all copies thereof, and you
may terminate this license at any time by doing so.

5. Update Policy. Foresight may create, from time to time,
updated versions of the Software. At its option, Foresight will
make such updates available to the Licensee.

6. Warranty Disclaimer. THE SOFTWARE IS PROVIDED “AS
IS” WITHOUT WARRANTY OF ANY KIND, EITHER EXPRESS
OR IMPLIED , INCLUDING, BUT NOT LIMITED TO, THE
IMPLIED WARRANTIES OF MERCHANTABILITY AND FIT-
NESS FOR A PARTICULAR PURPOSE. FORESIGHT DOES
NOT WARRANT, GUARANTEE, OR MAKE ANY REPRESEN-
TATIONS REGARDING THE USE, OR THE RESULTS OF THE
USE, OF THE SOFTWARE OR WRITTEN MATERIALS IN THE
TERMS OF CORRECTNESS, ACCURACY, RELIABILITY, CUR-
RENTNESS OR OTHERWISE. THE ENTIRE RISK AS TO THE
RESULTS AND PERFORMANCE OF THE SOFTWARE IS
ASSUMED BY YOU. IF THE SOFTWARE OR WRITTEN MATE-
RIALS ARE DEFECTIVE YOU, AND NOT FORESIGHT OR IT’S
DEALERS, DISTRIBUTORS, AGENTS, OR EMPLOYEES,
ASSUME THE ENTIRE COST OF ALL NECESSARY SERVIC-
ING, REPAIR OR CORRECTION. However, Foresight warrants
to the original Licensee that the disk(s) on which the Software is
recorded is free from defects in materials and workmanship
under normal use and service for a period of thirty (30) days from
the date of delivery as evidenced by a copy of the receipt.

THIS IS THE ONLY WARRANT OF ANY KIND, EITHER EXPRESS OR IMPLIED,
THAT IS MADE BY FORESIGHT ON THIS SOFTWARE PRODUCT. NO ORAL OR
WRITTEN INFORMATION OR ADVICE GIVEN BY FORESIGHT, IT’S DEALERS, DIS-
TRIBUTORS, AGENTS, OR EMPLOYEES SHALL CREATE A WARRANTY OR IN ANY
WAY INCREASE THE SCOPE OF THIS WARRANTY, AND YOU MAY NOT RELY ON
SUCH INFORMATION OR ADVICE. THIS WARRANTY GIVES YOU SPECIFIC
LEGAL RIGHTS. YOU MAY HAVE OTHER RIGHTS, WHICH VARY FROM STATE
TO STATE.

7. Governing Law. This agreement shall be governed by the
laws of the State of Texas.

AreaList and AreaList Pro Installer are trademarks of Foresight Technology,
Inc.
Apple is a registered trademark of Apple Computer, Inc.
Macintosh is a registered trademark of Apple Computer, Inc.
4th Dimension, 4D Compiler, 4D External Mover, 4D Mover, and 4D are regis-
tered trademarks of ACI and ACI US, Inc.
vi

Table of Contents

Table of Contents

Software License and Limited Warranty v
Table of Contents vii
Using the AreaList Pro Manual 1
Cross-Referencing Format 1
Command Lists 1
Command Descriptions and Syntax 1
About AreaList Pro 3
Installing and De-Installing AreaList™ Pro 5
Installing AreaList Pro for Macintosh 5
Installing AreaList Pro for Macintosh Using the Installer 5
Installing the Mac4DX Version of AreaList Pro 7
Installing the Windows Version of AreaList Pro 7
De-Installing AreaList Pro from Macintosh Versions of 4D 8
De-Installing the Mac4DX version of AreaList Pro 9
De-Installing the Windows version of AreaList Pro 9
The AreaList Pro User Interface 11
Headers 11
Footers 11
Column Widths 11
Column Locking 12
Rows with Multiple Lines of Text 12
Color 12
Styles 13
Sorting 13
Scrolling 14
Selection 14
Copy to Clipboard 15
Drag and Drop 15

To Drag a Row 15
To Drag a Column 16
Dragging to a Row 16
Dragging to a Column 16
To Drag a Cell 16
Dragging to a Cell 16

Enterability 17
Initiating Data Entry 17
Entering Data 17
Data Entry Using Popups 17
Moving the Current Entry Cell 18
Exiting Data Entry 19
Enterability for Fields 19

Resizable Windows with AreaList Pro 19
Developing with AreaList Pro 21
Creating an AreaList Pro object on a Layout 21
AreaList Pro Object Dimensions 22
Creating an %AL_DropArea on a Layout 23
vii

Table of Contents

Using the AreaList Pro Commands 23
Command Descriptions and Syntax 23
Causing an AreaList Pro Object’s Script to Execute 24
Developer Alert 24
Return Parameters from AreaList Pro Procedures 24
Using Pointers with AreaList Pro Commands 24
Configuration Commands 25
Specifying the Arrays to Display 25

Inserting and Deleting Arrays 27
Modifying Array Elements Procedurally 27

Specifying the Fields to Display 27
Using the AreaEntered and AreaExited Callback Procedures 28

Executing a Callback Upon Entering an Area 28
Executing a Callback Upon Exiting an Area 29

Headers 29
Footers 29
Column Widths 30
AreaList Pro Height 30
Column Locking 31
Rows with Multiple Lines of Text 31
Color 32

Column, Header, and Footer Colors 32
Row-Specific Colors 32
Cell-Specific Colors 32

Styles 33
Column, Header, and Footer Styles 33
Row-Specific Styles 33
Cell-Specific Styles 33

Sorting 34
Sort Buttons 34
Sort Editor 34
Procedural Sorting 34
Sorting When Displaying Fields 34

Scrolling 35
Selection 35
Clipboard 36
Picture Columns 37
Saving and Restoring Configuration Information 37
Changing Layout Pages 38
Using AreaList Pro on a Resizable Window 39

Creating a Resizable AreaList Pro Area 39
Performance Issues with the Formatting Commands 40
Commands 41
Field and Record Commands 95
Using the Field Display Capability 95

Temporary Arrays 95
Arrays and Fields 95
Fields from a Related One File 96
Redraw and Scrolling 96
TypeAhead 96
viii

Table of Contents

Copy rows to the clipboard 96
Enterability 96
Dragging 96
Sorting 97
Maximum Number of Records Displayed 97
Performance Issues When Displaying Fields 97

Commands 98
Enterability Commands 105
Initiating Data Entry 105
Entering Data 105

Filters 106
Maximum Length of a String Exceeded 106
Popups 107

Moving the Current Entry Cell 107
Using Callback Procedures During Data Entry 108

Executing a Callback Upon Entering a Cell 109
Executing a Callback Upon Leaving a Cell 110
Notifying the User of Invalid Data Entry from the Exit Callback 113
Redrawing the Display from the Callback Procedure 113

Exiting Data Entry 114
Commands 114
Dragging Commands 129
Background 129

AreaList Pro versions prior to 5.1 129
Technical Details of the Dragging Implementation 130
What are access “codes”? 131
After a drag 131
AreaList Pro on Multi-Page Layouts 132
Multiple Row Dragging 133

Drag DataType 133
DropArea 133
User Action Commands 145
AreaList Pro’s PostKey 145
Determining the User’s Action on an AreaList Pro Object 145
Selection 147
Sort Order 147
Column Widths 147
Column Information 147
Commands 148
Utility Commands 155
DropArea 155

DropArea Objects on a MultiPage Layout 155
Sort Editor 155
Commands 155
Changes from v4 to v5 159
Array Setup 159

Setting Columns in AreaList Pro 159
Inserting and Deleting Arrays 160
Modifying Elements Procedurally 160
Responding to User Actions on an AreaList Pro Object 161
Changing Pages 161
ix

Table of Contents

The AreaList Pro Drop Area 161
Configuration 161

Headers 161
Footers 161
Column Widths 161
Column Locking 161
Rows with Multiple Lines of Text 162
Color 162
Styles 162
Sorting 163
Scrolling 163
Selection 163
Copy to Clipboard 164
Drag and Drop 164
Using Picture Arrays 164
Saving and Restoring Configuration Information 164
Enterability 164
Precedence for configuration 164
New Return Value for AL_GetColumn Command 164

What’s New in AreaList Pro v5 and v5.1 167
What’s New in AreaList Pro v5.0 167
What’s New in AreaList Pro v5.1 168
What’s New in AreaList™ Pro v6 171
Displaying Fields 171

Scrolling 171
TypeAhead 171
Copy rows to the clipboard 171
Sorting 171
Enterability 172

Multiple Row Dragging 172
Cell Drag and Drop 172
PowerMac Native 173
Support for MenuSet™ Menus 173
Increased column capacity 173
Invisible Button 173

AreaList Pro’s PostKey 173
Enhance showing/hiding of scroll bars 174
Maximum Number of Draggable Objects 175
Two-Dimension Arrays 175
Disable highlighting of selected rows 175
Wrap fields when copying to the clipboard 175
Callback Procedures for Entering or Exiting an AreaList Pro Ob-
ject 175
Using AreaList Pro on a Resizable Window 176
Obsolete Commands 177
Setting Arrays 177
Obsolete Dragging Commands 177

Row Dragging 177
Column Dragging 178
%AL_DropArea 178
DropArea Objects on a MultiPage Layout 179
x

Table of Contents

Commands 179
Examples 185
Example 1 — A Simple One-Column List 185
Example 2 — Displaying Headers on the List 186
Example 3 — Displaying Data from a File 187
Example 4 — Selecting Multiple Lines 188
Example 5 — Allowing Data Entry 189
Example 6 — Restricting Data Entry to a Column 190
Example 7 — Validating Data Entry 191
Example 8 — Prohibiting Data Entry to a Specific Cell 193
Example 9 — Dragging from AreaList Pro to CalendarSet 195
Troubleshooting 197

Garbage characters are displayed for numeric arrays 197
AreaList Pro is not being updated properly 197
AreaList Pro’s scroll bars show up on other pages 197
AreaList Pro reports wrong drop object after Drag and Drop 198
AreaList Pro does not respond to single or double clicks 198
AreaList Pro user event code runs more than once 198
Row dragging doesn’t work. 198
A compiler run-time error occurs with a message that the param-

eters are undefined. 198
The compiler generates warnings that parameters are missing

from AreaList Pro commands. 198
The footers for an AreaList Pro object aren’t being displayed. 199
An AreaList Pro popup menu doesn’t display the correct values af-

ter being procedurally updated. 199
AreaList Pro doesn’t display correctly, or crashes, when used with

a SEARCH BY LAYOUT command. 199
My columns appear blank when displaying fields in AreaList Pro?

199
Other 199

AreaList ™ Pro Demo 201
Technical Support 203

Electronic Mail 203
World Wide Web 203
FAX 203
Telephone 203

About Foresight Technology 205
Opportunities 205

AreaList Pro Command Reference — by Chapter 207
AreaList Pro Command Reference — Alphabetical 209
xi

Table of Contents
xii

Using the AreaList Pro Manual

Using the AreaList Pro Manual

General information about the AreaList Pro user interface is dis-
cussed in “The AreaList Pro User Interface” on page 11.

An overview of the AreaList Pro commands and useage is cov-
ered in “Developing with AreaList Pro” on page 21.

Commands are organized by topic into individual chapters. Each
chapter begins with an overview of the topic, and how to use the
different commands. Each command is then covered in detail,
and examples provided.

If you are having troubles with AreaList Pro, review the chapter
“Troubleshooting” on page 197. If you are unable to resolve a
problem using this manual, you can contact our Technical Sup-
port Department. See “Technical Support” on page 203.

Cross-Referencing Format

Each time a command is used, a cross-reference is given in
parenthesis to let you quickly find the definition for the command.

Command Lists

There are two lists of commands at the back of the manual. One
is organized by chapter, and the other alphabetical. These lists
include the parameters for each command, and the page number
for the command definition.

Command Descriptions and Syntax

Each AreaList Pro command has a syntax, or rules, that
describe how to use the command in your 4D database. For
each command, the name of the command is followed by the
command’s parameters. The parameters are enclosed in paren-
thesis, and separated by semicolons. Following the command
syntax description, an explanation of the command’s parameters
is provided. For each parameter, the type of the parameter and a
description is shown. Several examples are provided for each of
the commands, showing examples of the syntax as well as how
the various commands are used together.

The first parameter for each command is the name of the AreaL-
1

Using the AreaList Pro Manual

ist Pro object on the layout. This parameter is a long integer, and
is required to allow the commands to operate on the correct
object.

Some parameters are used by AreaList Pro to return a value. Do
not use local variables for these parameters, because 4D doesn’t
support returning values from an external into a local variable.
Use a global variable in 4D v2, and in 4D v3 or later, a process or
inter-process variable.
2

About AreaList Pro

About AreaList Pro

AreaList Pro is an easy-to-use tool for implementing scrolling
lists on 4th Dimension layouts. Because AreaList Pro is an exter-
nal, it is very fast, and provides capabilities not available to the
developer using native 4D commands and objects, such as hori-
zontal scrolling, user-resizable columns, automatic column sizing
and formatting, copy to the clipboard, drag and drop interfaces,
and more. The array contents can even be altered directly by
entering data into the AreaList Pro area using typed characters
and popup menus, with full control over data entry. Operation is
extremely fast, and control objects (scroll bars, buttons, etc.) fol-
low the Macintosh interface.

Data is passed to AreaList Pro using 4D arrays, or field numbers.
If only two columns need to be displayed, create two arrays or
specify two fields and pass them as parameters to AreaList Pro.
No string parsing or other contortions are needed.

AreaList Pro can be used with just one command — no special
formatting is required. For those cases when formatting is
needed, several optional commands give you complete control
over the appearance of the area.

Special tools are implemented for the developer who desires to
customize the appearance and configuration of AreaList Pro,
allowing the customization to be implemented rapidly.

AreaList Pro v6.0 requires 4th Dimension v2.2.3 or higher, and is
compatible with databases complied with the 4D Compiler.
AreaList Pro v6.0 is fully compatible with 4th Dimension v3.5 and
4D Server v1.5. The field display capability available with version
6.0 requires 4D version 3.5.3, or 4D Server 1.5.3 or later.

AreaList Pro v6.0 also requires System 7 on a Macintosh and
Windows 3.1, Windows 95 or Windows NT on a PC.
3

About AreaList Pro
4

Installing and De-Installing AreaList™ Pro

Installing and De-Installing AreaList™ Pro

AreaList Pro must be installed (and de-installed) using the
AreaList Pro Installer or the Mac4DX or Win4DX installation
method described herein. Do not use the 4D External Mover or
ResEdit to install or remove AreaList Pro.

Installing AreaList Pro for Macintosh

The AreaList Pro for Macintosh disk contains two different ver-
sions of the external. AreaList™ Pro v6.0 Installer will install a
version that will run native on a 680x0 processor based Macin-
tosh. The file AreaList Pro v6.0 contains a version of AreaList
Pro that can run native on both a Power Macintosh and a 680x0
Macintosh. This second version can only be used with 4th
Dimension v3.2.5 or later.

These two versions are installed differently. The installation
method used has no effect on the way that AreaList Pro works.
When deciding where to install AreaList Pro, you should consider
the convenience of that location, and be sure to avoid installing it
in more than one of: the Proc.Ext file or the 4D structure file.

One final caution with the installation of AreaList Pro and other
exter-nals… if you are installing in a Proc.Ext or the Structure
file, be sure to keep all of the externals for a database in one
place only. Mixing some of the database externals in the
Proc.Ext file and some in the struc-ture file can cause your data-
base to crash due to resource ID conflicts.

For more information about 4th Dimension externals and their
installation, please refer to the 4th Dimension manuals.

Installing AreaList Pro for Macintosh Using the
Installer

This installation method is required when using versions of 4D
prior to 3.2.5. The AreaList™ Pro v6.0 Installer will allow you to
install AreaList Pro directly into the database structure file or into
a Proc.Ext file. A Proc.Ext file is recognized by 4th Dimension as
if it were part of a database, and can contain one or more exter-
nals, making them available to a database in the same folder as
the Proc.Ext file.
5

Installing and De-Installing AreaList™ Pro

This section discusses installation of AreaList Pro into a new
Proc.ext file, or an existing Proc.ext or structure file.

To Install AreaList Pro into a New Proc.Ext File

1 Open the AreaList Pro Installer. The installation window is
displayed.

2 Click the New button on the left. The Installer displays a stan-
dard Macintosh file dialog box with Proc.Ext already entered
in the filename area.
This dialog box allows you to specify the location to save the
Proc.Ext file on your hard disk. Normally, you will keep it in
the same folder as your 4th Dimension application.

3 Click Save.
The Installer creates the Proc.Ext file and saves it in the loca-
tion you specified.

The message area on the Installation dialog shows that the
Proc.Ext file you just created is now selected, but that AreaList
Pro is not yet installed.
4 Click Install.

The AreaList Pro Installer installs AreaList Pro into the
Proc.Ext file. This process takes no more than a few seconds.

5 When the message area shows that AreaList Pro is installed,
click Quit. You are returned to the Finder.

To Add AreaList Pro to a Proc.Ext File or a 4D Structure File

If you have already created a Proc.Ext file, or would prefer to
install AreaList Pro directly into a 4D structure file, you can use
the installer to add AreaList Pro to it.

1 Open the AreaList Pro Installer. The installation window is
displayed.
The message area indicates that there is no file currently
selected. In a moment, this area will identify the file in which
you will be install-ing AreaList Pro.

2 Click Open.
The Installer displays the standard Macintosh file dialog box.
The list displays Proc.Ext files, 4D structure files, and folders.

Note that in System 7, you can open a structure or Proc.Ext file
directly from the Finder by dragging the file onto the AreaList Pro
Installer.
3 Select the Proc.Ext File or 4D Structure File in which you

want to install AreaList Pro.
4 Click Open.

The AreaList Pro Installer opens the selected file.
6

Installing and De-Installing AreaList™ Pro

The message area on the AreaList Pro Installer window now
shows the name of the file you selected, and indicates whether
or not AreaList Pro is currently installed in this file. If AreaList Pro
is installed, the version will also be displayed.
5 Click Install.

AreaList Pro is installed into the selected file. This process
takes only a few seconds.

6 When the message area shows that AreaList Pro is installed,
click Quit.
You are returned to the Finder.

Installing the Mac4DX Version of AreaList Pro

If you are using 4th Dimension v3.2.5 or higher, a new method
for installing externals exists in addition to the above described
method. You can now create a folder named Mac4DX in the
same folder as the structure file, and simply drop special external
files into that folder. Use of this method avoids some external
conflicts, and it is the method used to install the AreaList Pro
Power Mac version.

In addition to the AreaList Pro installer described in the previous
sec-tions, your AreaList Pro disk also contains a file entitled
AreaList Pro™ v6.0. This is a FAT version of AreaList Pro, which
means that it will run native on either a Power Macintosh or a
680x0 Macintosh. This version can only be used with 4th Dimen-
sion v3.2.5 or later.

To install the Power Macintosh version of AreaList Pro:

1 Create a folder inside the same folder as your 4D Structure
file.

2 Make the name of this folder Mac4DX. (If this folder already
exists, you can skip steps 1 and 2.)

3 Copy the file AreaList™ Pro v6.0 into this folder.

Installing the Windows Version of AreaList Pro

Your AreaList Pro for Windows installer will create two files con-
taining the external: AreaList.4DX and AreaList.RSR. The former
contains the executable code for the external, and the latter con-
tains the external’s resources. They are located in the installed
directory \AreaList Pro\WIN4DX.

To install the Windows version of AreaList Pro:
7

Installing and De-Installing AreaList™ Pro
1 Execute the file A:\SETUP.EXE on the AreaList Pro for Win-
dows disk.
This will install a AreaList Pro directory structure on your disk.

2 Create a directory inside the same directory as your 4D
Structure file.

3 Make the name of this directory WIN4DX (if this directory
already exists, you can skip steps 2 and 3.)

4 Copy the files AreaList.4DX, AreaList.RSR, and
W4D_Drag.DLL from the installed directory \AreaList
Pro\WIN4DX\ into the directory you created.
W4D_Drag.DLL is needed for dragging in AreaList Pro on
Windows. This needs to be placed in the Win4DX folder along
with the AreaList.4DX and AreaList.RSR files. If you do not
place the W4D_Drag.DLL in the Win4DX folder you will not
be allowed to drag with AreaList Pro. If you do not plan to do
any dragging with AreaList Pro you do not need this file in
your Win4DX folder.

De-Installing AreaList Pro from Macintosh Versions of
4D

The AreaList Pro Installer allows you to de-install AreaList Pro
from a Proc.Ext file or 4D Structure file.

To De-Install AreaList Pro from a Macintosh Proc.ext or
Structure File

1 Open the AreaList Pro Installer.
The installation window is displayed.

The message area indicates that there is no file currently
selected. In a moment, this area will identify the file in which you
will be de-installing AreaList Pro.
2 Click Open.

The Installer displays the standard Macintosh file dialog box.
The list displays Proc.Ext files, 4D structure files, and folders.

3 Select the Proc.Ext File or 4D Structure File from which you
want to de-install AreaList Pro.

4 Click Open.
The selected file is opened.

The message area on the AreaList Pro Installer window now
shows the name of the file you selected, and indicates whether
or not AreaList Pro is currently installed in this file. If AreaList Pro
is already installed in the file, the Remove button is enabled.
8

Installing and De-Installing AreaList™ Pro
5 Click Remove.
The Installer de-installs AreaList Pro from the selected file.
This pro-cess takes only a few seconds.

6 When the message area shows that AreaList Pro is not
installed, click Quit.
You are returned to the Finder.

De-Installing the Mac4DX version of AreaList Pro

To de-install the Power Mac version of AreaList Pro, simply
remove the file AreaList™ Pro v6.0 from the Mac4DX folder.

De-Installing the Windows version of AreaList Pro

To de-install the Windows version of AreaList Pro, simply remove
the files AreaList.4DX and AreaList.RSR from the WIN4DX
directory that is at the same level as your structure file.
9

Installing and De-Installing AreaList™ Pro
10

The AreaList Pro User Interface
The AreaList Pro User Interface

AreaList Pro displays a scrolling area on 4D layouts, as shown
below.

Headers

Above the scrollable AreaList Pro area, there may be a row of
cells called the Header area. This area is usually used to contain
a description of the data displayed in each of the columns. The
Header area is also used to control the sorting of the data and
column dragging, if these features are enabled.The Header area
is not editable by the user, and will not scroll vertically with the
rest of the AreaList Pro area.

The user can click on a header to sort the list using that column.
See “Sorting” on page 13.

The user can click and drag a header to move a column to a new
location. See “Drag and Drop” on page 15.

Footers

Below the scrollable AreaList Pro area, there may be a row of
cells called the Footer area. This area can be used to store infor-
mation about the column, such as the total of a numeric column’s
data. The Footer area is not editable by the user, and will not
scroll vertically with the rest of the AreaList Pro area.

Column Widths

The user can resize any column by moving the arrow over the
11

The AreaList Pro User Interface
line dividing the columns in the header area. The pointer will
change to , the shape 4D uses in the Quick Report Editor for col-
umn resizing. Drag this column divider to resize the column.

AL_SetColOpts (page 62) can be used to disable this feature.

Note: A column can not be resized to greater than the width of
the list area minus 20 pixels.

Column Locking

One or more columns on the left side of the list can be locked in
place to prevent them from scrolling horizontally. The user can
adjust the lock position by dragging the Column Lock control,
shown below.

When columns are locked and the user clicks in the horizontal
scroll bar, the locked columns will not scroll. This capability is
similar to the Freeze Panes feature in Excel. When the column
lock position is adjusted, the list will automatically scroll to the full
left position to provide feedback to the user.

Rows with Multiple Lines of Text

AreaList Pro allows individual rows in the list area to contain
more than one line of text; however, all rows in the area will be of
the same height.

Color

AreaList Pro allows the entire range of 256 colors in the 4D pal-
ette, or the 10 colors of the built-in AreaList Pro palette.
Foreground colors can be applied to columns, individual rows,
cells, headers, and footers. Background colors can be applied to

Column Lock control
Click here and drag to change
the column lock position
12

The AreaList Pro User Interface

the list area, individual rows, cells, the header area, and the
footer area.

Styles

AreaList Pro supports all standard styles used by the Macintosh,
including Bold , Italic, Underline, Outline, Shadow, Condensed, or
ex t e n d e d , or any combination of these. These styles may be
applied to columns, headers, footers, individual rows, or cells in
an AreaList Pro area.

Sorting

The list can be sorted in ascending (A to Z) order by clicking a
column header, and sorted in descending order by Option-click-
ing the column header. Sorting the list actually sorts the 4D
columns displayed in the list. An underlined header indicates the
current sort column. If a column contains a picture, clicking its
column header will cause it to highlight, but no sorting will occur.

In addition to clicking a column header to sort, there is a sort edi-
tor available to allow sorting on multiple columns (such as Last
Name, First Name). To access this feature, Command-click the
header area of the AreaList Pro object. The dialog box shown
below is displayed.

The area on the left is a list of the columns displayed in the
AreaList Pro object. An item can be added to the Sort Order list
on the right by dragging it over the rectangle on the right or by
double-clicking. To remove an item from the Sort Order list, drag
it outside of the Sort Order list area.

To change the direction of the sort

1 Click the arrows to the right of each item in the Sort Order list
13

The AreaList Pro User Interface
(up arrow is ascending order, down arrow is descending.)
Although picture columns cannot be sorted, they will appear
in the list of columns. However, the item(s) for the picture col-
umn(s) will be disabled and cannot be dragged into the Sort
Order list.

2 Click the Sort button.

When displaying fields, the following features are present.

◆ Indexed fields will be bold in the Sort Editor.

◆ Fields from related one files will be dimmed in the Sort Editor.

Scrolling

The list can be scrolled in the following ways:

◆ Clicking the arrows and other scroll controls.

◆ Using the keyboard arrow keys. Each press of the arrow key
will scroll the list one row or column in the direction corre-
sponding to that key. Option-Arrow will scroll the list to the
top, bottom, far left, or far right.

◆ By typing on the keyboard. As characters are typed, the cur-
rent sort column will be used to vertically scroll the list. If
there is a pause between typed characters, then the scrolling
action will “reset.” The pause time is equal to the double-click
time set in the Macintosh Control Panel. This feature is dis-
abled when displaying fields. See “Specifying the Fields to
Display” on page 27 for more information.

◆ Clicking the list area and dragging the mouse arrow outside
of the list area. This action will scroll both horizontally and
vertically.

◆ Dragging a row or column. When dragging a row or column
within an AreaList Pro object, or to another valid AreaList Pro
object, the destination area may scroll. See “Drag and Drop”
on page 15.

Selection

The user can create a selection in an AreaList Pro area in one of
several ways: single line, multiple line, single cell, and multiple
cell. In single line selection, clicking a line will select that line,
and only one line can be selected at a time. In multiline mode,
the user can select multiple lines by dragging, Shift-clicking (con-
tinuous selection), or Command-clicking (discontinuous
selection). In single cell mode, clicking a cell will select only that
14

The AreaList Pro User Interface
cell, not the entire row. In multiple cell mode, the user can select
none, one, or many cells. The effect of any of these methods on
already selected rows or cells will be the same: the rows or cells
will be deselected.

The Edit menu Select All command will select all lines when the
multiple line selection option has been enabled, or select all cells
when the multiple cell selection option has been enabled.

Copy to Clipboard

Lines selected in an AreaList Pro object can be copied to the
Clipboard via the Edit menu Copy command. Because of the lim-
itations of the Macintosh clipboard — when a selection of lines
are copied to the clipboard, pictures will not be copied; a blank
field will appear on the clipboard where the picture would have
been.

Copying rows to the clipboard will not be allowed when display-
ing fields. The Copy menu item will be disabled when fields are
displayed.

Drag and Drop

The Drag and Drop feature of AreaList Pro allows the User to
drag a row or column in an AreaList Pro object to a different posi-
tion within that same area. This feature may also be used to drag
a row or column to a different AreaList Pro object, to a Calendar-
Set object, or to an %AL_DropArea (see “DropArea” on
page 155), on the same layout or a different layout.

To Drag a Row

AreaList Pro allows row dragging to be initiated by either Option-
clicking on a row and dragging it, or by just dragging the row,
depending on how AreaList Pro is configured. When the row is
clicked on and dragged the row will move freely with the pointer.
If the row is not accepted by the destination object a rectangle
will zoom back to the origin of the drag.

The user selects multiple rows by command-clicking or shift-
clicking. If the DragRowWithOptKey option of AL_SetDrgOpts
(page 137) is set to 1, then the user can also select multiple rows
by dragging. Once the row(s) are selected, the user may click (or
option-click) to drag them. An outline of the row(s) will follow the
pointer (cursor) location until the mouse is released.
15

The AreaList Pro User Interface
To Drag a Column

AreaList Pro allows column dragging to be initiated by clicking
the column header and dragging. If the UserSort option of
AL_SetSortOpts (page 69) is disabled, column dragging will
begin immediately, and an outline of the column will appear. If
user sorting is enabled, the drag begins when the mouse pointer
is greater than 20 pixels to the left or right of the column, or
greater than 30 pixels above or below the column header. When
the column is clicked on and dragged the column will move freely
with the pointer. If the column is not accepted by the destination
object a rectangle will zoom back to the origin of the drag.

Dragging to a Row

The list will scroll when the arrow is moved within the number of
pixels of the AreaList Pro object specified in AL_SetDrgOpts
(page 137). A small triangle will appear adjacent to the left side
of the destination object, indicating the insertion position.

Dragging to a Column

The list will scroll when the arrow is moved within the number of
pixels of the AreaList Pro object specified in AL_SetDrgOpts
(page 137). A small triangle will appear adjacent to the top of the
destination object, indicating the insertion position.

To Drag a Cell

The user drags a cell by clicking upon it and dragging it. An out-
line of the cell will follow the pointer (cursor) location until the
mouse is released.

Dragging to a Cell

When enabled, the user can drop an item as a row, as a column
or as a cell. If the destination is a cell, an outline will be shown
inside the cell that the cursor is over to indicate where the item
will be dropped.

See “Dragging Commands” on page 129 for more information.
16

The AreaList Pro User Interface
Enterability

Initiating Data Entry

Data entry using typed characters may be initiated on an
AreaList Pro object by several programmable methods, all of
which require clicking in the cell with or without a modifier key.
For example, data entry on a given cell could be initiated upon a
single click in that cell, a double click, or a double click along with
the Option, Command, Shift, or Control key.

Entering Data

Once typed data entry is initiated, standard editing functions can
be performed on the selected cell, including the Edit menu com-
mands Cut, Copy, Paste, Clear, Select All, and Undo. This is true
for cells containing pictures, also (except Select All.) Alphanu-
meric data being edited will always appear left-justified,
regardless of the column’s display justification. The I-Beam
pointer can be dragged across the data in the cell to select a por-
tion or all of the data.

If string data is entered, the system beep will sound for every
character typed past the maximum string length, and the typed
character will be ignored. (Note: there are special programming
considerations concerning this feature. See “Maximum Length of
a String Exceeded” on page 106.) If a string which exceeds the
maximum string length is pasted into a cell, it will appear in the
cell in its entirety, but will be truncated to the maximum string
length when the insertion point leaves that cell.

Boolean data is represented during data entry by either radio
buttons or a checkbox. This data may be entered via several
methods, including using the space bar, using the key combina-
tions t/f, T/F, y/n, Y/N, or the first letters, upper and lower case, of
values specified in the format for the boolean data entry column.
When entering other types of data, as in 4th Dimension, data
entry may be restricted to specific requirements via the use of
filters.

Data Entry Using Popups

AreaList Pro also has the ability to perform data entry using
popup menus for column data types other than picture or bool-
ean. Popup menus will appear as small buttons on the right side
of the cell which will be labeled with a downward pointing trian-
17

The AreaList Pro User Interface
gle. The items contained in the popup menu represent the
possible values for that cell, which are determined by you. How-
ever, for time or date information, a special popup menu will
allow the user to choose appropriate values for these data types.
The presence of a popup menu in a cell does not necessarily
prohibit the ability to enter typed characters.

The time menu is shown below. To select a time, the user should
begin on the left side of the popup, first selecting AM or PM, then
the hour, then the minutes. This menu will appear slightly differ-
ent depending on your system settings for the time format (using
a 24 hour clock, for example), but the method of selecting the
time will remain basically the same.

The date popup menu selects a date using a slightly different
method: the user begins on the right side of the popup, selects
the year, then month, and last, the day.

Moving the Current Entry Cell

AreaList Pro speeds data entry by making it easy to move to
other enterable cells once data entry is initiated. Since enterabil-
ity is determined on a column by column basis, the cells adjacent
to the current data entry cell may not be enterable. AreaList Pro
handles this situation by using the Tab key to move to the next
enterable cell to the right. A Shift-Tab combination will move data
entry to the next enterable cell to the left. If there isn’t an enter-
able cell on the same row, these key combinations will move the
data entry cursor to the next or previous row, respectively.

The Return key can be used in two ways during data entry. Nor-
mally, when the Return key or Shift-Return key is used, data
entry will be moved to the next or previous row in the same col-
umn as the current data entry cell. However, in some cases the
Return key may be used to enter a carriage return character into

Click here to scroll the years
displayed on the popup
18

The AreaList Pro User Interface
a text cell. As a default, the Return key moves the data entry
position. You may choose to configure the Enter key to function
the same as either the Return key or the Tab key, and also have
the option of causing the Arrow keys to move the insertion point
from cell to cell.

Exiting Data Entry

The user may exit data entry mode by using the mouse to click
on another layout object, an AreaList Pro control or header, or a
non-enterable column in the AreaList Pro area. However, if the
data that was entered was invalid, the cell cannot be exited until
valid data is entered. This is determined by the entry finished
callback procedure. See “Using Callback Procedures During
Data Entry” on page 108.

Enterability for Fields

Columns containing fields from a related one file will not be
enterable either by typing or by using popups.

Resizable Windows with AreaList Pro

You can configure an AreaList Pro object to be resizable on a
resizable window. When placed in the lower right portion of a
window, AreaList Pro will draw a size box in the lower right hand
corner of the window. Click on this box and drag to resize the
AreaList Pro object and its window.
19

The AreaList Pro User Interface
20

Developing with AreaList Pro
Developing with AreaList Pro

Creating an AreaList Pro object on a Layout

Implementing AreaList Pro in your 4D databases is very easy; in
fact, displaying data in a AreaList Pro area can be accomplished
with only one external command. The AreaList Pro object is
drawn on a 4D layout using the variable object tool. 4D opens the
Definition dialog for the object, which is where the object is
named and configured. The name will be used as a parameter
for the AreaList Pro commands.

Be careful to never have two AreaList Pro objects with the same
name on a 4D layout.

To configure a variable object as an AreaList Pro object

1 Create a variable object on a layout.
4D displays the variable object configuration dialog.

2 Select the External Object type.
The popup next to the Object type popup will include the
%AreaListPro external.

3 Choose the “%AreaListPro” item from the popup next to the
Type popup.
4D will enter it as the Procedure name on the right side of the
dialog, as shown below (the dialog shown below is the one
4D v3 uses for smaller screen sizes; the actual dialog pre-
sented may be different depending on the version of 4D you
are using, as well as your Macintosh configuration).

4 Name the variable.
This name will be used as the first parameter to many of the
AreaList Pro commands.
Note: This variable must be a process variable, not an inter-
process variable (i.e., the name cannot begin with the “◊”
character).
21

Developing with AreaList Pro
5 Click the OK button.
The AreaList Pro object is drawn in the layout editor.

The first line of text contains the name of the object and its pixel
dimensions, and the remaining lines are the Copyright notice. If
the object is small, the horizontal and vertical scroll bars are not
displayed in the Layout Editor, but everything will function cor-
rectly. The display of the object name, pixel dimensions,
Copyright notice, and scroll bars is an indication that the object
has been properly created and named.

AreaList Pro Object Dimensions

AreaList Pro provides information to allow you to properly size
the AreaList Pro area and to align it with other objects on the lay-
out in the 4th Dimension Design environment. A scale at the top
of the external object indicates the pixel width of the AreaList Pro
object. This may be used to align other layout objects which
appear adjacent to the AreaList Pro object. Displayed next to the
object’s name is the width and the height of the object as it is
drawn on the layout. These values include the entire area dis-
played by AreaList Pro, including the header and scroll bars, and
they will be updated whenever the object is resized.

See “AreaList Pro Height” on page 30 for additional information
22

Developing with AreaList Pro
about controlling the height of an AreaList Pro object.

Creating an %AL_DropArea on a Layout

To create AreaList Pro’s %AL_DropArea (page 155) external
area, follow the same method as is used to create an %AreaL-
istPro area, only select %AL_DropArea from 4D’s external area
popup. No text other than the area name will appear inside the
%AL_DropArea object.

Using the AreaList Pro Commands

The AreaList Pro Commands are used in the same way that a
4D command is used. Parameters are separated by the semico-
lon character (“;”). You can access the AreaList Pro commands in
the Procedure editor list. Near the bottom of the list, below the
area which contains the global procedures, there are seven
AreaList Pro command topics as shown below.

Clicking on a topic presents a popup menu of the AreaList Pro
commands available. Simply select a command, and 4D will
enter it for you at the current cursor position.

You can also type the command directly into the procedure.

Command Descriptions and Syntax

Each AreaList Pro command has a syntax, or rules, that
describe how to use the command in your 4D database. For
each command, the name of the command is followed by the
command’s parameters. The parameters are enclosed in paren-
thesis, and separated by semicolons. Following the command
syntax description, an explanation of the command’s parameters
is provided. For each parameter, the type of the parameter and a

Click on a topic to display a popup menu
listing commands for that topic
23

Developing with AreaList Pro
description is shown. Several examples are provided for each of
the commands, showing examples of the syntax as well as how
the various commands are used together.

The first parameter for each command is the name of the AreaL-
ist Pro object on the layout. This parameter is a long integer, and
is required to allow the commands to operate on the correct
object.

Causing an AreaList Pro Object’s Script to Execute

4D doesn’t provide a “selectable” external area with a way for the
external area to cause it’s attached script to run. Since you will
almost always want to have an AreaList Pro’s object script run
when the user takes an action on the area, such as clicking to
select a line, a mechanism is provided to accomplish this. See
“AreaList Pro’s PostKey” on page 145.

Developer Alert

If the first parameter passed to any AreaList Pro command is not
the object reference, an alert box will appear, informing you of
the syntax error. If this object reference is a PrintList Pro area or
another, external area, AreaList Pro will also pass this informa-
tion to you.

Return Parameters from AreaList Pro Procedures

Some parameters are used by AreaList Pro to return a value. Do
not use local variables for these parameters, because 4D doesn’t
support returning values from an external into a local variable.
Use a global variable in 4D v2, and in 4D v3, a process or inter-
process variable.

Using Pointers with AreaList Pro Commands

When writing generic AreaList Pro code, dereferenced pointers
can be used for the parameters in AreaList Pro commands. How-
ever, this is not needed for any of the parameters except for the
arrays passed using the obsolete commands AL_SetArrays
(page 179) and AL_InsertArrays (page 181). Please read the
section “Setting Arrays” on page 177 for more information.
24

Configuration Commands
Configuration Commands

AreaList Pro lets you display arrays or fields. This chapter dis-
cusses commands used to display arrays, as well as general
configuration commands. See “Field and Record Commands” on
page 95 for a complete discussion on displaying fields in an
AreaList Pro object.

Specifying the Arrays to Display

4D arrays are passed directly to AreaList Pro for display via the
AL_SetArraysNam (page 41) and AL_InsArrayNam (page 43)
commands. These should be performed in the Before or During
phase of layout execution, depending upon the desired appear-
ance of the AreaList Pro area upon initial display of the layout.
You do not have to setup or configure AreaList Pro in the Before
phase of a layout; this can all be accomplished in the During
phase. If no AreaList Pro setup is performed in the Before
phase, nothing will be displayed in the space occupied by the
external area until setup occurs in the During phase.

Whether the AreaList Pro columns are set in the Before phase
or in the During phase, the setup of an AreaList Pro area must
follow one main rule:

AL_SetArraysNam or AL_InsArrayNam must be called before
any other AreaList Pro commands are executed.

This is necessary to provide AreaList Pro with an opportunity to
allocate the data structures necessary to store formatting infor-
mation for each column. These data structures are allocated on a
per column basis, and AL_SetArraysNam for a given column (or
AL_InsArrayNam) must be executed before the appearance,
enterability, style, or any other property of that column can be
specified. If the AL_SetArraysNam or AL_InsArrayNam com-
mand is incorrectly used, an error code indicating the problem
will be returned:

Valu
e Error Code Action

0 No error n/a

1 Not an array check to make sure all arrays are
correctly typed
25

Configuration Commands
Up to 255 arrays can be displayed by AreaList Pro, with up to fif-
teen columns specified in each call to AL_SetArraysNam or
AL_InsArrayNam . The position of the first array, ColumnNum ,
and the number of arrays, NumArrays, are also specified in these
commands. All array types except for pointer and two dimen-
sional arrays, are allowed, and all arrays must have the same
number of elements.

Note: The maximum number of rows is 32,750. A future version
of AreaList Pro will support the display of up to 8,000,000 rows.

In addition to standard single-dimension arrays, one dimension
of a two-dimensional array may be passed to
AL_SetArraysNam (page 41) or AL_InsArrayNam (page 43).
For example: “My2DArray{1}” may be passed as Array1.

While similar in purpose, the commands AL_SetArraysNam
and AL_InsArrayNam affect previously specified arrays in differ-
ent ways. In the second or any subsequent executions of
AL_SetArraysNam , if ColumnNum is the number of a currently
existing column, then it and any subsequent columns will be
replaced by the arrays specified in the command. However,
AL_InsArrayNam will actually insert the new arrays specified,
and simply move existing arrays over to accomodate them. In
both commands, the column number specified must either
already exist or be the next higher column number available; no
column numbers can be skipped.

For more information about adding, replacing and deleting
arrays, read “Inserting and Deleting Arrays”, below.

2 Wrong type of
array

pointer and two-dimensional
arrays are not allowed

3 Wrong number
of rows

make sure that all arrays have the
same number of elements

4 Maximum num-
ber of arrays
exceeded

100 arrays is the maximum

5 Not enough
memory

Increase 4D’s RAM partition, or
change your approach to use
fewer or smaller arrays

Valu
e Error Code Action
26

Configuration Commands
Inserting and Deleting Arrays

After the initial setup and display of the AreaList Pro area, you
may want to insert, remove, or replace arrays in the currently dis-
played AreaList Pro object. To accomplish this, AreaList Pro
provides the commands AL_InsArrayNam (page 43),
AL_RemoveArrays (page 45), AL_SetArraysNam (page 41),
and AL_UpdateArrays (page 46).

These commands allow you to implement a dynamic display of
data. You should keep in mind that the column number used to
refer to a given column, particularly when using any of the multi-
tude of configuration commands, may change as columns are
inserted or deleted. In later attempts to configure this column,
the new number must be used.

If new arrays of different sizes are to be displayed, then the old
arrays must first be removed using AL_RemoveArrays , then the
new arrays added with AL_InsArrayNam or
AL_SetArraysNam .

Modifying Array Elements Procedurally

When the arrays are initially specified via the
AL_SetArraysNam (page 41) or AL_InsArrayNam (page 43)
command, the number of array elements is established for the
area. To change the number of elements displayed in the existing
arrays, new elements should be added or deleted, and the com-
mand AL_UpdateArrays (page 46) called with UpdateMethod
set to -2.

If the value or any attribute of an array element is changed or if
the number of elements is changed, but the specified arrays are
the same, you should instruct AreaList Pro to refresh the area
with AL_UpdateArrays .

Specifying the Fields to Display

AreaList Pro uses the new SubselectionToArray command in
4D to get the records for display. This command is available
beginning with 4D v3.5.3. Therefore fields can not be displayed
in an AreaList Pro object when used with an earlier version of
4D.

See “Field and Record Commands” on page 95 for the details on
display fields.
27

Configuration Commands
Using the AreaEntered and AreaExited Callback Proce-
dures

A “callback” is a global 4D procedure which is executed by an
external. AreaList Pro lets you make use of callbacks when
entering and exiting an AreaList Pro object. This feature provides
you with the ability to enable/disable buttons or other variables
depending upon which object is active. See “Redrawing the Dis-
play from the Callback Procedure” on page 113 for more
information on updating buttons or other variables from a call-
back procedure. Also, you can call AL_GotoCell (page 126)
from the area entered callback to initiate data entry when the
object is entered.

Your callback procedures may use any 4D commands, but can
only use the AreaList Pro commands shown in Table 3, “Enter-
ability Commands Allowed from a Callback,” on page 108 and
Table 4, “Other AreaList Pro Commands Allowed from a Call-
back,” on page 108.

Note: AL_UpdateArrays (page 46) can only be called with
UpdateMethod equal to -1 from a callback procedure. Please
read the section “Modifying Array Elements Procedurally” on
page 27 for more information. AL_UpdateFields (page 101) can
only be called with UpdateMethod equal to 0 or 1 from a callback
procedure.

You should not call any AreaList Pro commands which change
the number of displayed columns, their position in the area, or
their sorted order.

Executing a Callback Upon Entering an Area

An “area entered” callback procedure is a 4th Dimension proce-
dure called whenever the AreaList Pro object is entered. The
area entered callback procedure is specified by passing the pro-
cedure name in the AreaEnteredProc parameter of
AL_SetMainCalls (page 48). If this parameter is a null string
then no procedure will be called.

The area entered callback procedure is passed one parameter
by AreaList Pro. This parameter is a long integer that corre-
sponds to the name of the AreaList Pro object on the layout.

You must use the declaration
C_LONGINT($1)
28

Configuration Commands
in your callback procedure. Since the parameter, the long integer
$1, contains 4D’s representation of the AreaList Pro object, it can
be used as the first parameter of any AreaList Pro procedure
called.

Executing a Callback Upon Exiting an Area

An “area exited” callback procedure is a 4th Dimension proce-
dure called whenever the AreaList Pro object is exited. The area
exited callback procedure is specified by passing the procedure
name in the AreaExitedProc parameter of AL_SetMainCalls
(page 48). If this parameter is a null string then no procedure will
be called.

The area exited callback procedure is passed one parameter by
AreaList Pro. This parameter is a long integer that corresponds
to the name of the AreaList Pro object on the layout.

You must use the declaration
C_LONGINT($1)

in your callback procedure. Since the parameter, the long integer
$1, contains 4D’s representation of the AreaList Pro object, it can
be used as the first parameter of any AreaList Pro procedure
called.

Headers

Column headers are set with AL_SetHeaders (page 50). If more
than one line of text is needed in a column header, the Num-
HeaderLines parameter of AL_SetHeight (page 90) should be
used. Additional space can be added to the height of a header by
specifying the HeaderHeightPad parameter of this command.

Additional header attributes are specified by using
AL_SetHdrStyle (page 56), AL_SetFormat (page 52),
AL_SetForeClr (page 71), and AL_SetBackClr (page 73), for
style, justfication, foreground color, and background color,
respectively. Display of column headers can be supressed using
the HideHeaders parameter of AL_SetMiscOpts (page 66).

Footers

Column footers are set with AL_SetFooters (page 51). If more
than one line of text is needed in a column footer, the NumFoot-
erLines parameter of AL_SetHeight (page 90) should be used.
29

Configuration Commands
Additional space can be added to the height of a footer by speci-
fying the FooterHeightPad parameter of this command.

Additional footer attributes are specified by using
AL_SetFtrStyle (page 57), AL_SetFormat (page 52),
AL_SetForeClr (page 71), and AL_SetBackClr (page 73) for
style, justification, foreground color, and background color,
respectively. Display of column footers can be controlled using
the ShowFooters parameter of the AL_SetMiscOpts (page 66)
command. Column footers are hidden by default, so you must
use this command if you wish to display footers.

Column Widths

Column widths are by default sized automatically, an option
which can be overridden with AL_SetWidths (page 51). Nor-
mally, there is no need to use this command, but for details about
exceptions to this rule please read “Performance Issues with the
Formatting Commands” on page 40.

Column widths can be set manually by using AL_SetWidths
(page 51); however, you may want to view the widths generated
by AreaList Pro’s automatic column sizing as a good starting ref-
erence. The DisplayPixelWidth parameter of AL_SetColOpts
(page 62) should be set to 1 to enable this feature, which allows
you to toggle between the header text and the column width by
clicking on the check box that appears in the bottom right corner
of the AreaList Pro object. Additionally, the columns can be
resized in the Runtime environment, and the column width val-
ues are updated immediately.

When using this feature, you should be sure to enable the dis-
play of headers by passing 0 in the HideHeaders parameter of
AL_SetMiscOpts (page 66).

AreaList Pro Height

Whenever an array or field command is called, AreaList Pro per-
forms calculations necessary to size the external area based on
the size of the external object as drawn on the layout. AreaList
Pro will always ensure that only complete rows are displayed in
the AreaList Pro area. However, this means that the actual height
of the external area as displayed in the User or Runtime Environ-
ment may be slightly less than the height in the Layout Editor.
This can be a hindrance when you are attempting to align other
layout objects with the AreaList Pro object.
30

Configuration Commands
To ensure that the AreaList Pro object does not change its size
when displayed in the Runtime environment, a tool is available to
tell you what size to make the area. To use this tool, first set the
DisplayPixelWidth parameter of AL_SetColOpts (page 62) to 1,
then click the checkbox as shown.

The mouse pointer will change from an arrow to a pixel count
whenever it is over the list and this option is set. When clicked on
a row, this counter will display the necessary height of the
AreaList Pro object for that row to be the bottom row displayed.
For example, if ten rows are displayed in the area, and you click
the seventh row, the number displayed by the pointer will be the
height of the object necessary to display exactly seven rows. You
can then size the AreaList Pro object in the Design environment
using the displayed height. Please read the section “AreaList Pro
Object Dimensions” on page 22 for more information.

The header size, footer size and the horizontal scroll bar will be
taken into account if they are displayed.

Note: This feature is unavailable if enterability can be initiated
with a single click.

Column Locking

You can set the lock position using AL_SetColLock (page 90).
AL_GetColLock (page 153) returns the current position of the
column lock. You can also disable the column lock control by
using the AllowColumnLock parameter of AL_SetColOpts
(page 62).

Rows with Multiple Lines of Text

Row height is determined by a combination of the height of the
text line or picture, the number of lines, and any additional pad-
ded space. The height of each line of text is determined by the
font and point size selected, which are set with AL_SetStyle
(page 58). The number of text lines and the amount of padding
are set with the NumRowLines and RowHeightPad parameters

Column widths/headers toggle checkbox
31

Configuration Commands
of AL_SetHeight (page 90). Padded space is the amount of
space above and below the text block, (half of the amount above,
half below.) All rows will be of the same height.

Color

Column, Header, and Footer Colors

Foreground and background colors can be specified for an
AreaList Pro object using AL_SetForeClr (page 71) and
AL_SetBackClr (page 73). The foreground color can be speci-
fied for each column, column header, and column footer, and the
background color can be specified for the list area, the header
area, and the footer area.

Row-Specific Colors

AL_SetRowColor (page 77) is used to set the foreground and
background color of a specified row, and will override any column
specification. You can revert to the original column settings by
setting the RowForeColor1 or RowBackColor1 parameter to the
empty string (“”), and the RowForeColor2 or RowBackColor2
parameter to -1. Use this command to override all row-specific
color settings by passing 0 for the RowNumber parameter.

By default, the row color will move with a row if the columns are
sorted or a row is dragged. This can be overridden using the
MoveWithData parameter of AL_SetRowOpts (page 59).

Cell-Specific Colors

Individual column elements, called cells, can be assigned a
unique foreground color and background color. This capability
can be used to set negative numbers in red, provide special for-
matting to show the current selected or enterable cell, and
design more attractive and useful lists. These attributes can be
set in the Before phase, the During phase, and either of the
AreaList Pro callback procedures (see “Using Callback Proce-
dures During Data Entry” on page 108).

You can use AL_SetCellColor (page 81) to set the color config-
uration for an individual cell, a range of cells, or a selection of
discontiguous cells. AL_GetCellColor (page 85) is used to
determine any cell-specific colors for a particular cell.
AL_GetCellColor can only determine a color which has been
set using the 4D palette of 256 colors, not the AreaList Pro
32

Configuration Commands
palette.

Use the MoveWithData option of AL_SetCellOpts (page 65) to
keep the cell-specific information with a cell when a row or col-
umn is dragged to a new location or the list is sorted.

Styles

Column, Header, and Footer Styles

Styles for displayed columns can be set on a column by column
basis using AL_SetStyle (page 58) to set the style for the data,
AL_SetHdrStyle (page 56) to set the header style, and
AL_SetFtrStyle (page 57) to set the footer style. If a 0 is used in
the ColumnNum parameter, the style will be applied to all
columns.

Row-Specific Styles

AL_SetRowStyle (page 75) is used to set the font and style of a
specified row, and will override any column specification. You can
revert to the original column settings by setting the StyleNum
parameter to -1. Use this command to override all row-specific
style settings by passing 0 for the RowNum parameter.

By default, the row style will move with a row if the columns are
sorted or a row is dragged. This can be overridden using the
MoveWithData parameter of AL_SetRowOpts (page 59).

Cell-Specific Styles

Individual column elements, called cells, can be assigned a
unique font and style. This capability can be used to provide spe-
cial formatting to show the current selected or enterable cell, and
design more attractive and useful lists. These attributes can be
set in the Before phase, the During phase, and either of the
AreaList Pro callback procedures (see “Using Callback Proce-
dures During Data Entry” on page 108).

You can use AL_SetCellStyle (page 79) to set the font and style
configuration for an individual cell, a range of cells, or a selection
of discontiguous cells. AL_GetCellStyle (page 83) is used to
determine any cell-specific formats for a particular cell.

Use the MoveWithData option of AL_SetCellOpts (page 65) to
keep the cell-specific information with a cell when a row or col-
33

Configuration Commands
umn is dragged to a new location or the list is sorted.

Sorting

Sort Buttons

User sorting of the columns via the column header sort buttons
is enabled via the UserSort parameter of AL_SetSortOpts
(page 69).

Sort Editor

The user can be presented with the AreaList Pro Sort Editor by
calling AL_ShowSortEd (page 157). The prompt at the top of
the window defaults to “AreaList™ Pro Sort Editor”, and can be
customized using the SortEditorPrompt option of
AL_SetSortOpts (page 69). The current sort order of the
AreaList Pro area can be displayed when the Sort Editor dialog
is presented by setting the ShowSortOrder parameter of
AL_SetSortOpts (page 69). If the AllowSortEditor option of
AL_SetSortOpts is enabled, the user can invoke the Sort Editor
by Command-clicking a column header as described in “Sorting”
on page 13.

Procedural Sorting

Multilevel sorting can be performed procedurally on the AreaList
Pro columns by using AL_SetSort (page 86). This command will
sort all of the columns in an AreaList Pro area, using up to 15 of
them as sort criteria for the multi-level sort. If a column that con-
tains a picture column is passed as one of the sort criteria, that
column and all subsequent columns will be ignored. AL_GetSort
(page 149) can be used to retrieve the current sort order of the
area, regardless of whether this sort order was established by
the user or procedurally.

Sorting When Displaying Fields

Columns containing fields from a related one file will not be
sorted when their column header is clicked upon. However, if the
UserSort option of AL_SetSortOpts (page 69) is set to 2,
“Bypass the user sort buttons”, and the column header of a col-
umn containing a field from a related one file is clicked upon, the
AreaList Pro area’s script will run, with ALProEvt = - 1.

Before AreaList Pro sorts fields (using 4th Dimension’s sorting
34

Configuration Commands
routines) it turns messages off. If messages were on previously,
then AreaList Pro will turn them back on after sorting.

Scrolling

The current scroll position can be set and retrieved using
AL_SetScroll (page 88) and AL_GetScroll (page 152),
respectively.

You can hide either the horizontal or vertical scroll bar, or both,
using AL_SetScroll (page 88). This allows you to construct a
grid of cells, providing a different interface from a standard scroll-
ing list.

When a scroll bar is hidden, the user is still able to scroll using
the arrow keys or by dragging. You can also set and get the scroll
position procedurally.

Selection

Use AL_SetEntryOpts (page 119) to set the method of selec-
tion and data entry. You have extensive control over how the user
interacts with a list - a mouse click can select a row, or place the
cursor into the cell for data entry. You can also configure the
modifier keys (command, shift, option, and control) to control the
selection behavior. Please read the section “Enterability Com-
mands” on page 105 for more information.

You can configure an AreaList Pro object for no cell selection,
single cell selection only, or multiple cell selection, usingthe
CellSelection parameter of AL_SetCellOpts (page 65). If you
select not to allow cell selection, then the MultiLines parameter
of AL_SetRowOpts (page 59) is used to determine the type of
row selection — single-line only or multiple-line.

In single line mode, the default configuration requires that one
line always be selected. This can be overridden using the
AllowNoSelection option in AL_SetRowOpts (page 59), which
enables the user to Command-click to deselect the selected row,
leaving no rows selected. AL_SetRowOpts is also used to con-
figure AreaList Pro for single or multiple line selection mode.

You can set the selected rows using AL_SetLine (page 87) if in
single line mode, or AL_SetSelect (page 87) if in multiple line
selection mode.
35

Configuration Commands
You can set the selected cells using AL_SetCellSel (page 84).

When an AreaList Pro object is in cell selection mode, mouse
clicks are used to highlight cells rather than rows. If multiple cell
selection is enabled using AL_SetCellOpts (page 65), then the
user can shift-click and command-click to select multiple cells.
Discontiguous (non-adjoining) selections are allowed. When an
AreaList Pro object is in cell selection mode, it is always possible
that no cells are selected.

AL_SetCellSel (page 84) is used to select cells procedurally,
and can select a single cell, a range of cells, or a list of cells. You
can determine the selected cells using AL_GetCellSel
(page 151).

When the user scrolls an AreaList Pro object that is in cell selec-
tion mode using the arrow keys or keyboard type-ahead, the list
will scroll, but the cell selection will not change.

Note: Row dragging is disabled when an AreaList Pro object is in
cell selection mode.

The enterability options set with AL_SetEntryOpts (page 119)
are fully supported when an AreaList Pro object is in cell selec-
tion mode.

If an AreaList Pro object is in multi-cell selection mode, the Edit
menu Select All command is enabled.

Clipboard

The data copied to the clipboard can be formatted using
AL_SetCopyOpts (page 68). This command allows you to
specifiy the field and record delimiters copied with the data, and
whether any Hidden Column data should be copied to the
clipboard.

The Edit menu Copy command is disabled when an AreaList Pro
object has been set to allow cell selection using
AL_SetCellOpts (page 65).

Copying rows to the clipboard will not be allowed when display-
ing fields. The Copy menu item will be disabled when fields are
displayed. See “Field and Record Commands” on page 95 for
more information about displaying fields.
36

Configuration Commands
Picture Columns

AreaList Pro supports the display of picture columns. The Format
parameter of AL_SetFormat (page 52) will cause the picture to
be displayed in one of several ways:

◆ truncated and justified to the upper left of the cell

◆ truncated and centered in the cell

◆ scaled to fit the cell

◆ scaled proportionally to fit the cell.

The UsePictHeight parameter of this command will tell AreaList
Pro whether to use a picture’s original height, which is stored
with the picture, when calculating the row height for the AreaList
Pro area. If you choose not to use the picture’s height in the row
height calculation and additional space is needed to display the
picture, the NumRowLines parameter of AL_SetHeight
(page 90) should be used to increase the row height.

Saving and Restoring Configuration Information

Once an area is configured using the many commands provided
by AreaList Pro, the state of that area can be saved in a picture
variable or field using AL_SaveData (page 47).
AL_RestoreData (page 49) then allows you to restore the con-
figuration to this or another AreaList Pro area at some time in the
future, saving much of the effort required to configure multiple
AreaList Pro objects. The information saved in the picture is that
controlled by the AreaList Pro commands shown in Table 1.

Table 1: Configuration Commands Used by AL_SaveData

AL_SetWidths AL_SetHeaders AL_SetFormat

AL_SetStyle AL_SetHdrStyle AL_SetForeClr

AL_SetBackClr AL_SetDividers AL_SetHeight

AL_SetRowOpts AL_SetColOpts AL_SetMiscOpts

AL_SetCopyOpts AL_SetSortOpts AL_SetColLock

AL_SetFooters AL_SetFtrStyle AL_SetEnterable*

AL_SetFilter AL_SetCallbacks AL_SetEntryOpts

AL_SetEntryCtls AL_SetCellOpts AL_SetDrgSrc

AL_SetDrgDst AL_SetDrgOpts AL_SetMainCalls

AL_SetWinLimits
37

Configuration Commands
* The PopupArray parameter of this command will not be saved.

Note: The purpose of this command is to restore an AreaList Pro
area to its original configuration, and alterations to the area
caused by the user will not be reflected in the saved picture.

The configuration information saved in this picture also can be
used to configure a PrintList Pro v3.0 area using
PL_RestoreData (please see the PrintList Pro Reference for
more information). Much of the saved AreaList Pro information
listed above does not apply to a PrintList Pro area and will be
ignored. The information controlled by the commands listed
below will be used to configure the PrintList Pro area:

Note: Any part of this information concerning AreaList Pro foot-
ers is ignored by PrintList Pro.

Changing Layout Pages

If an AreaList Pro object is displayed on a multipage layout, you
must inform it when the user changes to another layout page.
This is done by calling the following command whenever the lay-
out is changed to a different page:

AL_SetScroll (eList;0;0) `inform AreaList Pro object that page is being
changed

where eList is the name of the AreaList Pro object on the page
you are leaving. If this is not done the AreaList Pro object’s scroll
bars may be active on another page.

If the Drag and Drop feature of AreaList Pro is used on a multi-
page layout, a similar action must be performed. When pages
are changed in the layout, you must ensure that Drag and Drop
is enabled only for AreaList Pro areas on the current page (if this
feature is desired), and that Drag and Drop is disabled for any
AreaList Pro areas on other pages. Please read the section
“AreaList Pro on Multi-Page Layouts” on page 132 for more
information.

Table 2: Configuration Commands Which Can be Used to Configure a
PrintList Pro Object

AL_SetWidths AL_SetHeaders AL_SetFormat

AL_SetStyle AL_SetHdrStyle AL_SetForeClr

AL_SetBackClr AL_SetDividers AL_SetHeight
38

Configuration Commands
AL_SetDropDst (page 156) should be used to disable a Dro-
pArea on the current page when moving to a different layout
page. Please read the section “DropArea Objects on a MultiPage
Layout” on page 155 for more information.

Using AreaList Pro on a Resizable Window

An AreaList Pro object and its window may be made resizable
using AL_SetWinLimits (page 91). Only one resizable AreaList
Pro object may be placed on a layout. Other objects (4D vari-
ables, AreaList Pro objects, etc.) may be placed to the left or
above this resizable object, but no objects may be placed to the
right or below this object.

The AreaList Pro object is not really resizable. It appears this
way because AreaList Pro draws its scroll bars at the right and
bottom edges of the window instead of the right and bottom
edges of the area when this option is enabled.

Creating a Resizable AreaList Pro Area

The following steps are necessary to produce a resizable
AreaList Pro object:

1 Create an AreaList Pro object on a layout. Make sure that the
area extends well beyond (in the 1200 to 1300 pixel range)
the right and bottom edges of the layout.

2 Call AL_SetWinLimits (page 91) to enable resizing and to
specify the minimum and maximum width and height of the
window.

3 The vertical scroll bar must be shown in the AreaList Pro
object for the size box to be drawn properly. The horizontal
scroll bar may be shown or hidden. See “Scrolling” on
page 35 for more information.

4 Make certain that the window type used does not contain a
size (grow) box. The AreaList Pro object will draw its own size
box. The window types 4 or 12 are recommended. If a win-
dow type with a size box is chosen, AreaList Pro cannot limit
the size of the window to the minimum or maximum settings.

5 Within the script of the AreaList Pro object, in the During
phase, if ALProEvt is equal to -9 (the AreaList Pro object was
resized), call AL_DoWinResize (page 93). This command
allows AreaList Pro to change the window size to what the
user selected via the size box.

Note: If the user clicks in the zoom box (in a type 12 window), no
interaction is necessary. The window and the AreaList Pro object
39

Configuration Commands
will be resized automatically.

Note: When the AreaList Pro object is resized to a smaller width,
the column sizes (see “Column Widths” on page 11) and the col-
umn lock will be adjusted accordingly. Consequently you should
set the minimum width and height to large enough values to min-
imize this effect.

Performance Issues with the Formatting Commands

AreaList Pro uses an algorithm to automatically size the col-
umns. Because of this, there is usually no need to use
AL_SetWidths (page 51) to manually size a column prior to dis-
playing a list. However, if the number of items in the list is very
large (more than 2,000 items with many columns), then the list
might take one or two seconds to display, due to the automatic
sizing calculation. If this is the case, using AL_SetWidths will
improve the display time of the list. Text and string columns will
take the longest to automatically size. Since you can use
AL_SetWidths on just some of the columns, if you are display-
ing very large arrays, but only one is text or string, you could use
the AL_SetWidths command on just the text or string column,
and let AreaList Pro automatically calculate the other column
widths. To determine the optimum width for a column, you can
display the pixel widths of columns in the headers during your
design process, and then use AL_SetWidths to set the width.
See “Column Widths” on page 30 and the AL_SetWidths defini-
tion on page 51 for more information.

Note: When AreaList Pro display fields, the automatic column
sizing algorithm uses only the first 20 records (or less, if the
selection contains less than 20 records) in the selection. These
records are always read regardless of whether the columns are
automatically or manually sized. Therefore there is no perfor-
mance penalty using the automatic column sizing algorithm
when displaying fields. See “Field and Record Commands” on
page 95 for more information about displaying fields.

AL_SetFormat (page 52) does not affect the performance of
AreaList Pro, regardless of the size of the columns being dis-
played. This is because AreaList Pro is using 4D’s array data
directly, and as the list is scrolling, the formatting is being done
“on-the-fly.”

Sorting the columns will have the greatest impact on the time
required for AreaList Pro to be displayed in the Before phase or
updated in the During phase. If you will be displaying many large
40

Configuration Commands
columns, you can reduce the display time by turning off the Sort-
InDuring option using AL_SetSortOpts (page 69).

Commands

%AreaListPro

%AreaListPro is the command used to identify the AreaList Pro
external area when you create an external area object on a lay-
out. This command is only used in the object definition for an
AreaList Pro object, and should never be used as a command in
a script or procedure.

AL_SetArraysNam

AL_SetArraysNam (AreaName; ColumnNum; NumArrays; Array1; … ; ArrayN) ➞

ErrorCode

AL_SetArraysNam tells AreaList Pro what arrays to display. Up
to fifteen arrays can be set at a time. Any 4D array type can be
used except pointer and two-dimensional arrays. There are three
very important points to note about this command:

◆ This command must be called first, before any of the other
commands, in both the Before and During phases.

◆ The columns must be added in sequential order, unless the
particular column has already been added. In other words, to
set 30 arrays, you must set arrays 1 through 15 prior to set-
ting arrays 16 through 30.

◆ All arrays set with this command must have the same number
of elements as each other and as any other arrays previously
set.

AL_SetArraysNam may be called in the Before phase to initially
set the arrays to be displayed. Since AreaList Pro can display up
to 255 arrays, this command may have to be used more than
once. However, it is not mandatory to set any arrays in the
Before phase; in that case the area on the layout where AreaList

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column at which to set the first array
NumArrays integer number of arrays to set (up to 15)
Array string name of 4D array
ErrorCode integer error code
%AreaListPro 41

Configuration Commands
Pro is defined will be blank.

You can pass Process arrays and Interprocess arrays to AreaList
Pro, but not Local arrays (a local array has a name that starts
with a "$" character; an interprocess array has a name that starts
with a "◊" character on the Macintosh and the "<>" characters on
Windows)).

One dimension of a two-dimensional array may be passed in the
Array1; … ; ArrayN parameters. For example: “My2DArray{1}”
may be passed as Array1.

AL_SetArraysNam replaces the AL_SetArrays command (pre-
version 5). Please read the section “Array Setup” on page 159 for
more information.

ColumnNum — Integer. This parameter specifies the column
number to set the first array being passed by this call of
AL_SetArraysNam .

NumColumns — Integer. This parameter specifies the number of
columns being set with this call to AL_SetArraysNam .

ErrorCode — Integer. The possible values are:

AL_SetArraysNam may be called in the During phase to set
arrays to be displayed or to replace arrays that are already
displayed.

Examples:

Valu
e Error Code Action

0 No error n/a

1 Not an array check to make sure all arrays are
correctly typed

2 Wrong type of
array

pointer and two-dimensional
arrays are not allowed

3 Wrong number
of rows

make sure that all arrays have the
same number of elements

4 Maximum num-
ber of arrays
exceeded

100 arrays is the maximum

5 Not enough
memory

Increase 4D’s RAM partition, or
change your approach to use
fewer or smaller arrays
AL_SetArraysNam 42

Configuration Commands
`AreaList Pro eNameList script
Case of

:(Before)
SELECTION TO ARRAY ([Contacts]FN;aFN;[Contacts]LN;aLN;[Con-

tacts]City;aCity;[Contacts]State;aState) `load the arrays
$Error:=AL_SetArraysNam (eNameL-

ist;1;4;"aFN";"aLN";"aCity";"aState") `starting at column 1,
set 4 arrays

:(During)
Case of

:(ALProEvt=2) `user double-clicked
:(ALProEvt=1) `user single-clicked
:(ALProEvt=-1) `user sorted

End case

`set up the eList AreaList Pro object with 25 arrays
`two calls must be made since only 15 arrays can be passed each time

$Error:=AL_SetArraysNam (eList;1;15;"array1";"array2";"array3";"array4";"arr
ay5";"array6";
"array7";"array8";"array9";"array10";"array11";"array12";"array
13"; "array14";"array15")

$Error:=AL_SetArraysNam (eList;16;10;"array16";"array17";"array18";"array1
9";"array20"; "array21";"array22";
"array23";"array24";"array25")

AL_InsArrayNam

AL_InsArrayNam (AreaName; ColumnNum; NumArrays; Array1; … ; ArrayN) ➞

ErrorCode

AL_InsArrayNam functions the same as AL_SetArraysNam
(page 41), except that the arrays are inserted before
ColumnNum.

All subsequent columns will maintain their settings. In other
words, any header text, column styles, etc. will stay with their
corresponding array.

Up to fifteen arrays can be set at a time. Any 4D array type can
be used except pointer and two-dimensional arrays. There are
three very important points to note about this command:

◆ This command (or AL_SetArraysNam) must be called first,

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column at which to insert the first array
NumArrays integer number of arrays to insert (up to 15)
Array array 4D array
ErrorCode integer error code
AL_InsArrayNam 43

Configuration Commands
before any of the other commands, in both the Before and
During phases.

◆ The columns must be added in sequential order, unless the
particular column has already been added. In other words, to
set 30 arrays, you must set arrays 1 through 15 prior to set-
ting arrays 16 through 30.

◆ All arrays set with this command must have the same number
of elements as each other and as any other arrays previously
set.

AL_InsArrayNam may be called in the Before phase to initially
set the arrays to be displayed (although you will usually use
AL_SetArraysNam in the Before phase). Since AreaList Pro
can display up to 255 arrays, this command may have to be used
more than once. However, it is not mandatory to set any arrays in
the Before phase; in that case the area on the layout where
AreaList Pro is defined will be blank.

You can pass Process arrays and Interprocess arrays to AreaList
Pro, but not Local arrays (a local array has a name that starts
with a "$" character; an interprocess array has a name that starts
with a "◊" character on the Macintosh and the "<>" characters on
Windows)).

One dimension of a two-dimensional array may be passed in the
Array1; … ; ArrayN parameters. For example: “My2DArray{1}”
may be passed as Array1.

AL_InsArrayNam replaces the AL_InsertArrays command
(pre-version 5). Please read the section “Array Setup” on
page 159 for more information.

ColumnNum — Integer. This parameter specifies the column
number to set the first array being passed by this call of
AL_InsArrayNam .

NumColumns — Integer. This parameter specifies the number of
columns being set with this call to AL_InsArrayNam .

ErrorCode — Integer. The possible values are:

Valu
e Error Code Action

0 No error n/a

1 Not an array check to make sure all arrays are
correctly typed
AL_InsArrayNam 44

Configuration Commands
Example:
$Error:=AL_InsArrayNam (eList;4;3;"aFN";"aLN";"aComp") `starting at col-

umn 4, insert 3 arrays

AL_RemoveArrays

AL_RemoveArrays (AreaName; ColumnNum; NumArrays)

AL_RemoveArrays is used to remove arrays from AreaList Pro.
NumArrays, beginning at ColumnNum, will be removed from the
list.

All subsequent columns will maintain their settings. In other
words, any header text, column styles, etc. will stay with their
corresponding array.

Examples:
AL_RemoveArrays (eList;8;4) `starting at column 8, remove 4 arrays
AL_RemoveArrays (eList;1;20) `remove all 20 arrays

2 Wrong type of
array

pointer and two-dimensional
arrays are not allowed

3 Wrong number
of rows

make sure that all arrays have the
same number of elements

4 Maximum num-
ber of arrays
exceeded

100 arrays is the maximum

5 Not enough
memory

Increase 4D’s RAM partition, or
change your approach to use
fewer or smaller arrays

Valu
e Error Code Action

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column at which to remove the first array
NumArrays integer number of arrays to remove (up to 255)
AL_RemoveArrays 45

Configuration Commands
AL_UpdateArrays

AL_UpdateArrays (AreaName; UpdateMethod)

AL_UpdateArrays is used to update AreaList Pro. Use this com-
mand whenever any elements of the arrays being displayed are
changed (elements added, deleted, or modified), but the arrays
themselves remain the same.

AL_UpdateArrays must be called after modifying the arrays and
before any other setup commands (sorting, formatting, etc.).

UpdateMethod— integer. This parameter tells AreaList Pro how
to update the AreaList Pro object AreaName.

Note: You may only pass a value of -1 for UpdateMethod when
calling AL_UpdateArrays from a callback procedure. Please
read the section “Using Callback Procedures During Data Entry”
on page 108 for more information.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
UpdateMethod integer method to use to update the AreaList Pro

object

Val
ue Description When to Use

-2 Rescan all arrays and recalcu-
late all applicable heights,
widths, and other related val-
ues. The scroll position, and
row or cell selection will be
reset. This value is converted
to -1 if passed from a callback
procedure.

If column or row resizing is
necessary, or you have added
or removed elements to any of
the displayed arrays. Also if
you show or hide either scroll
bar, the headers, or footers, or
add or remove arrays.

-1 Refresh the AreaList Pro
object, but don’t recalculate
any values.

The AreaList Pro object needs
to be updated because of
changes to an array element’s
contents, or formatting
changes to colors, styles, etc.
This value should only be used
when no column or row resiz-
ing is necessary, since format-
ting, styles, or an element’s
new contents could affect a
column width or row height.
AL_UpdateArrays 46

Configuration Commands
Example:
If(During)

 `any action which modifies an array element value, or changes a configura-
tion attribute

 `must include updating the AreaList Pro object
AL_UpdateArrays (eList;-2)

End if

`bDeleteLines button script
`This example shows how to delete elements from displayed
`arrays and how to update AreaList Pro
`The routine deletes selected lines in an AreaList Pro object named eList.
`eList is configured for multiple-line selection,
`and it is displaying three arrays: aFN, aLN, aComp

ARRAY INTEGER (aLines;0) `create an integer array with a size of zero
$OK:=AL_GetSelect (eList;aLines) `get the lines selected by the user, put

into aLines array
If($OK=1) `enough RAM was available to resize the aLines array

For ($i;Size of array (aLines);1;-1) `start at the end of the array and go to
top

DELETE ELEMENT (aFN;aLines{$i}) `delete the selected element from
the three arrays

DELETE ELEMENT (aLN;aLines{$i})
DELETE ELEMENT (aComp;aLines{$i})

End for
AL_GetScroll (eList;vVert;vHoriz) `get current scroll position
AL_UpdateArrays (eList;-2) `update the AreaList Pro object
AL_SetScroll (eList;vVert;vHoriz) `reset scroll position so it doesn’t change

End if

AL_SaveData

AL_SaveData (AreaName; SavePict) ➞ ResultCode

AL_SaveData is used to save the current configuration of the
AreaList Pro object. See “Saving and Restoring Configuration
Information” on page 37 for more information, including what
information is saved, and how this information can be used to
configure both AreaList Pro and PrintList Pro objects

ResultCode — Integer, 0 or 1.

Paramete
r Type Description

AreaName longint name of AreaList Pro object on layout
SavePict picture location to save the setup data
ResultCode integer identifies result condition

1 the command was successful and the setup
information was saved
AL_SaveData 47

Configuration Commands
AL_SetMainCalls

AL_SetMainCalls (AreaName; AreaEnteredProc; AreaExitedProc)

AL_SetMainCalls is used to set callback procedures that are
used when entering and exiting the AreaList Pro object.

AreaEnteredProc — String. This procedure will be called when-
ever the AreaList Pro object is entered. If this is the null string
then no procedure will be called.

The AreaEnteredProc is passed one parameter. This parameter
is a long integer that corresponds to the name of the AreaList
Pro object on the layout.

Note: If the AreaList Pro object is the first object in the entry
order, when the layout containing the AreaList Pro object is first
opened, the AreaEnteredProc will not be called. This is because
4D gives the event to AreaList Pro (to inform it that it is to be the
active object when the layout is opened) prior to the execution of
the layout’s Before phase. If you want to take action based upon
this active object, then call the AreaEnteredProc from the Before
phase in your 4D code.

AreaExitedProc — String. This procedure will be called when-
ever the AreaList Pro object is exited. If this is the null string then
no procedure will be called.

The AreaExitedProc is passed one parameter. This parameter is
a long integer that corresponds to the name of the AreaList Pro
object on the layout.

Some of the uses of these callbacks are as follows:

◆ Enabling buttons or other variables that pertain to the
AreaList Pro object from the AreaEnteredProc. You must use
interprocess global buttons or variables and call CALL PRO-
CESS (-1) to update them.

◆ Disabling buttons or other variables that pertain to the

0 there was not enough memory to save the con-
figuration

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
AreaEnteredProc string 4D procedure called when object is entered
AreaExitedProc string 4D procedure called when object is exited
AL_SetMainCalls 48

Configuration Commands
AreaList Pro object from the AreaExitedProc. You must use
interprocess global buttons or variables and call CALL PRO-
CESS (-1) to update them.

◆ Call AL_GotoCell (page 126) from the AreaEnteredProc to
initiate data entry when the object is entered.

Example:
 ` set up area entered and area exited callbacks
AL_SetMainCalls (eList;"AreaEntrProc";"AreaExitProc")

 ` AreaEntrProc, area entered callback procedure
C_LONGINT($1)

AL_GotoCell ($1;1;1) ` Initiate data entry on the first cell in the first column

ENABLE BUTTON (◊bChangeSub)
ENABLE BUTTON (◊bAltRowBkd)
CALL PROCESS (-1)

 ` AreaExitProc, area exited callback procedure
C_LONGINT($1)

DISABLE BUTTON (◊bChangeSub)
DISABLE BUTTON (◊bAltRowBkd)
CALL PROCESS (-1)

AL_RestoreData

AL_RestoreData (AreaName; RestorePict) ➞ ResultCode

AL_RestoreData is used to restore a saved configuration to an
AreaList Pro object. See “Saving and Restoring Configuration
Information” on page 37 and the AL_SaveData command
(page 47) for more information.

ResultCode — Integer, 0 or 1.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
SavePict picture location of saved setup data
ResultCode integer identifies result condition

1 the command was successful and the
setup information was restored

0 the information in the picture was not valid
AreaList Pro or PrintList Pro information
AL_RestoreData 49

Configuration Commands
AL_SetHeaders

AL_SetHeaders (AreaName; ColumnNum; NumHeaders; Header1; … ; HeaderN)

AL_SetHeaders is used to specify the value to display in the
header for each column. Up to fifteen headers can be set at a
time.

The size of the header value is used by the automatic column
sizing algorithm. If you are displaying a fixed-string array with an
element size of 2 characters, the column will be very narrow,
unless you specify a header which contains several characters.
For example, states are usually stored in a database as a two-
character alpha, and you would probably display them directly or
load them into a string array sized for two-characters length. But
if you specify a header of “State” the column will be sized about
two and a half times wider. If the header length is less than the
values being displayed in the column, then the header length will
not affect the column width.

A, B, C, etc. will be displayed in the headers if AL_SetHeaders
is not used. The AL_SetHeaders command can be used in both
the Before phase and During phase of a script or procedure.

Examples:
$Error:=AL_SetArraysNam (eNameList;1;4;"aFN";"aLN";"aCity";"aState")
AL_SetHeaders (eNameList;1;4;"First Name";"Last Name";"City";"State")

$Error:=AL_SetArraysNam (eNames;1;2;"aFN";"aLN")
AL_SetHeaders (eNames;1;2;Fieldname([People]FirstName);Field-

name([People]LastName))

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column at which to set the first header
NumHeaders integer number of headers to set (up to 15)
Header string value to display in column header

Footer string value to display in column footer
AL_SetHeaders 50

Configuration Commands
AL_SetFooters

AL_SetFooters (AreaName; ColumnNum; NumFooters; Footer1; … ; FooterN)

AL_SetFooters is used to specify the value to display in the
footer for each column. Up to fifteen footers can be set at a time.
The ShowFooters option of AL_SetMiscOpts (page 66) must be
enabled.

The size of the footer value is used by the automatic column siz-
ing algorithm the same way that the header for a column is used.
For more information, See “AL_SetHeaders ” on page 50.

Nothing will be displayed in the footer area if AL_SetFooters is
not used. AL_SetFooters can be used in both the Before phase
and During phase of a script or procedure.

Example:
For ($i;1;Size of array (aSalary))
 $Total := $Total+aSalary{$i}
End for
AL_SetFooters (eEmpList; 3; 1; String ($Total))

AL_SetWidths

AL_SetWidths (AreaName;ColumnNum;NumWidths;Width1; … ; WidthN)

AL_SetWidths is used to set the pixel width for one or more col-
umns. Up to fifteen widths can be set at a time. A Width of zero
forces a column to be sized automatically based on its data type.

A column cannot be less than 3 pixels wide. If you pass a value
of less than 3 but greater than zero, AreaList Pro will ignore it
and use 3. AreaList Pro will not let a column be wider than the

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column at which to set the first footer
NumFooters integer number of footers to set (up to 15)

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column at which to set the first width
NumWidths integer number of widths to set (up to 15)
Width integer pixel width of column
AL_SetFooters 51

Configuration Commands
width of the list area minus 20.

If not called, the default width for all columns is determined
based on the type of array or field displayed in the column and
the header for the column.

AL_SetWidths can be used in both the Before phase and Dur-
ing phase of a script or procedure.

Example:
$Error:=AL_SetArraysNam (eNames;1;5;"aFN";"aLN";"aCity";"aState";"aZip"

)
AL_SetWidths (eNames;1;5;150;50;0;100;0) `0 forces autosizing for that col-

umn!

AL_SetFormat

AL_SetFormat (AreaName;ColumnNum;Format;ColumnJust;HeaderJust;FooterJust;

UsePictHeight)

AL_SetFormat is used to control the format and justification of a
column being displayed. You can control the format of string,
integer, long integer, real, date, boolean, and picture columns
with the Format parameter. Time values can be formatted also,
since they use long integer arrays. Any valid 4D format, including
custom formats created in the Design Environment, may be used
with these column types, except for string arrays. Text columns
cannot be formatted.

Additionally, null time and date values can be set to display a
blank by appending a dash character (“-”) to the Format string
parameter.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column number to format
Format string format to use
ColumnJust integer justification for column list items
HeaderJust integer justification for column header
FooterJust integer justification for column footer
UsePictHeight integer use the picture height in the row height

calculation
AL_SetFormat 52

Configuration Commands
The defaults for the different column types are:

Format (for string arrays) — String. Any formatting characters
supported for 4D are allowed. Pre-defined Styles (i.e., those
saved in the Design Environment) are not allowed.

Format (for text columns) — Not Supported.

Format (for numeric columns) — String. See the 4D command
String in the 4D Language Reference for the possible values.
Any valid 4D numeric format may be used.

Format (for bolean columns) — String. The string contains two
formats, one for the True value, the other for the False value, sep-
arated by a semicolon. Examples: “Male;Female” and
“Macintosh;Windows.”

Format (for date columns) — String. See the 4D command
String in the 4D Language Reference for the possible values.
Any valid 4D date format may be used. Examples: “0” or “3” are
valid formats.

Column
Type Format

String none

Integer “##,##0”

Long Integer “#,###,##0”

Real “#,###,##0.0
0”

Boolean “True;False”

Date “0”

Picture “0”

Format Example

0 4/19/95 (default)

1 4/19/95

2 Wed, Apr 19, 1995

3 Wednesday, April 16,
1995

4 04/19/95 or 04/19/
1895
AL_SetFormat 53

Configuration Commands
Format (for time columns) — String. See the 4D String com-
mand in the 4D Language Reference, and the 4D Design
Reference discussion of formatting for the possible values. There
are no time arrays in 4D as such, they are in reality long integer
arrays. These arrays are displayed as time values by using the
proper format. The format is the two character sequence “&/” fol-
lowed by the number given in the discussion of the String
command. For example, one proper format for a time array would
be “&/2”.

Format (for picture columns) — String.

ColumnJust, HeaderJust, and FooterJust — Integer. The justifi-
cation for a column, its header, and its footer can be controlled
independently. The possible values are:

5 April 19, 1995

6 Apr 19, 1995

Format Example

1 01:02:03

2 01:02

3 1 hour 2 minutes 3
seconds

4 1 hour 2 minutes

5 1:02 AM

0 the picture will be truncated, if necessary, and justified
to the upper left (default)

1 the picture will be truncated, if necessary, and centered
in the cell

2 the picture will be scaled to fit the cell.
3 the picture will be scaled to fit the cell, and remain pro-

portional to its original size

Value Justification

0 Default

1 Left

2 Center

3 Right

Format Example
AL_SetFormat 54

Configuration Commands
By default, headers are left justified, unless the column elements
are center justified. In that case, the header will default to center
justification.

The default footer justification corresponds to the column justifi-
cations, which for the different column types are:

The ColumnJust parameter is ignored for picture columns. Use
the Format parameter to justify picture columns.

UsePictHeight — Integer, 0 or 1.

If the column ColumnNum does not have a picture column, this
parameter will be ignored.

AL_SetFormat can be used in both the Before phase and Dur-
ing phase of a script or procedure.

Examples:
`format a real column (3rd column), default column
`justification, center header justification, and default footer justification

AL_SetFormat (names;3;"$###,###.00";0;2;0;0)

`format a string (2nd column), default
`column justification and default header justification, center footer justifica-

tion

Column Type
Default
Column

Justification

Integer right

LongInteger
(including Time)

right

Real right

Boolean left

Date right

String left

Text left

Picture n/a - see the For-
mat parameter

1 use height of the largest picture calculating
the row height

0 ignore the picture height when calculating the
row height (default)
AL_SetFormat 55

Configuration Commands
AL_SetFormat (eContacts;2;"(###) ###-####";0;0;2;0)

`format a boolean column (4th column), right column
`justification and left header justification

AL_SetFormat (eList;4;"Male;Female";3;1;0;0)

`format style 3 for a date column, default justification (5th column)
`default column, header, and footer justification

AL_SetFormat (eNames;5;"3")

`format style 2 for a time column, right justification for header and column
(7th column)

AL_SetFormat (eList;7;"&/2";3;3;0;0)

`custom format style, default justification for column, center
`header (5th column)

AL_SetFormat (eNames;5;"|Dollars";0;2;0;0)

`Scale picture column to fit proportionally (1st column)
`use default header and footer justification, and use picture size in row

height calculation
AL_SetFormat (ePeople;1;"3";0;0;0;1)

AL_SetHdrStyle

AL_SetHdrStyle (AreaName;ColumnNum;FontName;Size;StyleNum)

AL_SetHdrStyle is used to control the appearance of the
AreaList Pro column headers. The columns can be controlled
individually or as a group.

ColumnNum — Integer. This parameter specifies what column
header to apply the style to. Use a value of zero (0) to apply the
parameters to all columns.

StyleNum — Integer. The StyleNum is a Macintosh font style
code. By adding the codes together, you can combine styles.
The numeric codes for StyleNum are shown below.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer number of column
FontName string name of the font
Size integer size of the font
StyleNum integer style of the font

Style Number

Plain 0
AL_SetHdrStyle 56

Configuration Commands

FontName — String. Use this parameter to specify the font for
the specified ColumnNum. If not called, or the specified Font-
Name is not found, the header(s) will be displayed in Geneva 12
point plain. If the font specified by FontName is not installed,
then Geneva will be used.

AL_SetHdrStyle can be used in both the Before phase and
During phase of a script or procedure.

Examples:
AL_SetHdrStyle (eList;1;"Geneva";12;1) `Geneva 12 point bold, column 1
AL_SetHdrStyle (Names;3;"New York";12;3) `New York 12 point bold italic,

column 3
AL_SetHdrStyle (Names;0;"Palatino";10;3) `Palatino 10 point bold italic, all

columns

AL_SetFtrStyle

AL_SetFtrStyle (AreaName;ColumnNum;FontName;Size;StyleNum)

AL_SetFtrStyle is used to control the appearance of the
AreaList Pro column footers. The columns can be controlled indi-
vidually or as a group.

ColumnNum — Integer. This parameter specifies what column
footer to apply the style to. Use a value of zero (0) to apply the
parameters to all columns.

Bold 1

Italic 2

Underline 4

Outline 8

Shadow 16

Condensed 32

E x t e n d e d 64

Style Number

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer number of column
FontName string name of the font
Size integer size of the font
StyleNum integer style of the font
AL_SetFtrStyle 57

Configuration Commands

StyleNum — Integer. The StyleNum is a Macintosh font style
code. By adding the codes together, you can combine styles.
The numeric codes for StyleNum are shown below.

FontName — String. Use this parameter to specify the font for
the specified ColumnNum. If not called, or the specified Font-
Name is not found, the header(s) will be displayed in Geneva 12
point plain. If the font specified by FontName is not installed,
then Geneva will be used.

AL_SetFtrStyle can be used in both the Before phase and Dur-
ing phase of a script or procedure.

AL_SetStyle

AL_SetStyle (AreaName;ColumnNum;FontName;Size;StyleNum)

AL_SetStyle is used to control the appearance of the AreaList
Pro columns. The columns can be controlled individually or as a
group.

ColumnNum — Integer. This parameter specifies what column to
apply the style to. Use a value of zero (0) to apply the parameters
to all columns.

StyleNum — Integer. The StyleNum is a Macintosh font style

Style Number

Plain 0

Bold 1

Italic 2

Underline 4

Outline 8

Shadow 16

Condensed 32

E x t e n d e d 64

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer number of column
FontName string name of the font
Size integer size of the font
StyleNum integer style of the font
AL_SetStyle 58

Configuration Commands

code. By adding the codes together, you can combine styles.
The numeric codes for StyleNum are shown below.

FontName — String. Use this parameter to specify the font for
the specified ColumnNum. If not called, or the specified Font-
Name is not found, the header(s) will be displayed in Geneva 10
point plain. If the font specified by FontName is not installed,
then Geneva will be used.

AL_SetStyle can be used in both the Before phase and During
phase of a script or procedure.

Examples:
AL_SetStyle (eNames;0;"Geneva";9;0) `Geneva 9 Plain, all columns
AL_SetStyle (eList;4;"Helvetica";12;32) `Helvetica 12 point Condensed, 4th

column
AL_SetStyle (eNames;1;"Times";9;1) `Times 9 point bold, 1st column

AL_SetRowOpts

AL_SetRowOpts (AreaName;MultiLines;AllowNoSelection;DragLine;AcceptDrag;

MoveWithData;DisableRowHighlight)

AL_SetRowOpts is used to control several AreaList Pro options

Style Number

Plain 0

Bold 1

Italic 2

Underline 4

Outline 8

Shadow 16

Condensed 32

E x t e n d e d 64

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
MultiLines integer single or multiple-line selection
AllowNoSelection integer allow no lines to be selected in single line mode
DragLine integer drag a line to this or another object
AcceptDrag integer accept drag from another AreaList Pro object
MoveWithData integer move row style and color with row
DisableRowHighlight integer disable highlighting of selected rows
AL_SetRowOpts 59

Configuration Commands
pertaining to rows.

Note: the DragLine and AcceptDrag parameters are ignored
when using the Macintosh Drag Manager routines provided in
AreaList Pro v5.1 and later. Please read “Dragging Commands”
on page 129 and “Obsolete Dragging Commands” on page 177
for more information.

MultiLines — Integer, 1 or 0.

In multi-line mode, no lines are initially selected unless
AL_SetSelect (page 87) is used. In single-line mode, the first
line is selected unless AL_SetLine (page 87) is used.

AllowNoSelection — Integer, 1 or 0.

Regardless of the value of AllowNoSelection, AL_SetLine
(page 87) can be used with the LineNum parameter set to 0 to
set the selection to no lines.

DragLine — Integer, 0 to 6. The default is 0.

Values 1, 2, and 3 enable a line to be dragged while the Option
key is pressed:

Values 4, 5, and 6 enable a line to be dragged without any modi-
fier key:

1 allow the user to command-click, shift-
click, or drag to select multiple lines

0 allow only one line to be selected
(default).

1 the user can command-click to deselect
a line in single line mode

0 the user can not deselect a line (default)

0 do not allow a line to be dragged (default)

1 allow a line to be dragged within, but not out
of the AreaList Pro object.

2 allow a line to be dragged out of, but not
within the AreaList Pro object.

3 allow a line to be dragged both within and
out of the AreaList Pro object.

4 allow a line to be dragged within, but not out
of the AreaList Pro object

5 allow a line to be dragged out of, but not
within the AreaList Pro object
AL_SetRowOpts 60

Configuration Commands
If a line is dragged without any modifier key, dragging to select
multiple lines will not work.

If the line is dragged to another position within the list, AreaList
Pro will automatically rearrange all of the columns. If the line is
dragged out of the list to another AreaList Pro object, it is up to
you to remove and insert row(s) as necessary. See
“AL_GetDragLine ” on page 182 for more information.

AcceptDrag — Integer, 1 or 0.

MoveWithData — Integer, 1 or 0. This parameter is used with
AL_SetRowStyle (page 75) and AL_SetRowColor (page 77).

DisableRowHighlight — Integer, 0 or 1.

When DisableRowHighlight is set to 1, no rows will be high-
lighted if the user selects them or if they are selected by calling
the commands AL_SetLine (page 87) or AL_SetSelect
(page 87). AreaList Pro will still maintain a list of the selected
rows, even though they will not be highlighted. Thus the com-
mands AL_GetLine or AL_GetSelect will still return the correct
selected row(s). This parameter is especially useful if you want to
have a different way of showing selected rows such as by having
a column of check marks or bullets.

AL_SetRowOpts can be used in both the Before phase and
During phase of a script or procedure.

Examples:
`setup the list for single-line selection, allow the user to

6 allow a line to be dragged both within and out
of the AreaList Pro object

1 this AreaList Pro object will accept a line
dragged from another AreaList Pro object

0 this AreaList Pro object will not accept a
line(default)

1 the row style and color information will move
with the row whenever the AreaList Pro object
is sorted or a row is dragged within the list
(default)

0 the row style and color information will not
move with the row.

1 no rows will be highlighted when selected
0 all selected rows will be highlighted when selected

(default)
AL_SetRowOpts 61

Configuration Commands
`select no lines, don't allow the user to drag lines,
`don't accept a drag from another AreaList Pro object,
`don't move the row style and color info with the row
`don't disable row highlighting

AL_SetRowOpts (eNames;0;1;0;0;0;0)

`setup the list for multi-line selection, require one line selection,
`allow the user to Option-drag lines only within the list,
`accept a drag from another AreaList Pro object,
`move the row style and color info with the row
`disable row highlighting

AL_SetRowOpts (eList;1;0;1;1;1;1)

`setup the list for single-line selection, require one line selection,
`allow the user to drag lines within the list and out of the list without the

Option key,
`accept a drag from another AreaList Pro object,
`move the row style and color info with the row
`disable row highlighting

AL_SetRowOpts (eList;0;0;6;1;1;1)

AL_SetColOpts

AL_SetColOpts (AreaName;AllowColumnResize;ResizeInDuring;AllowColumnLock;

HideLastColumns;DisplayPixelWidth;DragColumn;AcceptDrag)

AL_SetColOpts is used to control several AreaList Pro options
pertaining to columns.

Note: the DragColumn and AcceptDrag parameters are ignored
when using the Macintosh Drag Manager routines provided in
AreaList Pro v5.1 and later. Please read “Dragging Commands”
on page 129 and “Obsolete Dragging Commands” on page 177
for more information.

AllowColumnResize — Integer, 1 or 0. This parameters controls
whether the user can resize column by clicking on the dividing
line between column headers.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
AllowColumnResize integer user resizable columns
ResizeInDuring integer automatically resize columns in the During phase
AllowColumnLock integer allow user to lock columns
HideLastColumns integer number of columns from the right to hide
DisplayPixelWidth integer display column widths
DragColumn integer drag a column to this or another object
AcceptDrag integer accept drag from another AreaList Pro object

1 allow the user to resize columns (default)
AL_SetColOpts 62

Configuration Commands
When the HideHeaders parameter of AL_SetMiscOpts
(page 66) is set to 1 (headers are hidden), AllowColumnResize
is set to 0 internally by AreaList Pro.

ALProEvt will be set to -3 if the user resizes a column (see
“Determining the User’s Action on an AreaList Pro Object” on
page 145). You can get the column widths using AL_GetWidths
(page 148).

ResizeInDuring — Integer, 1 or 0.

AllowColumnLock — Integer, 1 or 0.

ALProEvt will be set to -4 if the user changes the column lock
position (see “Determining the User’s Action on an AreaList Pro
Object” on page 145). You can determine the current column lock
position using AL_GetColLock (page 153).

HideLastColumns — Integer. This parameter specifies the num-
ber of columns from the right to not display.

This parameter is used when an ID column is needed for
SEARCH purposes after the list is displayed, but you don’t want
to clutter the display with the ID values. You would pass the ID
array as the last array to AL_SetArraysNam (page 41), and hide
the last column using this parameter with a value of one. Any
pre-sort or user-sort will include the hidden column(s), to keep
the values in all the columns “lined-up.” If the number of columns
passed to AreaList Pro is less than or equal to the value speci-
fied by HideLastColumns, then only the first column will be

0 do not allow the user to resize columns

1 Whenever an array or field command is called in
the During phase, the columns will be resized as
they are in the Before phase. The widths used will
be the last ones passed using AL_SetWidths
(page 51). If any column widths are 0, then
AreaList Pro will automatically calculate the width
based upon the contents of the column.

0 no columns will be resized (default)

1 enables the column lock area of the AreaList Pro
object, allowing the user to modify the number of
locked columns (default)

0 disables the column lock area, which prevents the
user from modifying the number of locked columns

0 forces the display of all columns
(default).

1 to (number of columns-1) number of columns to hide
AL_SetColOpts 63

Configuration Commands
displayed.

DisplayPixelWidth — Integer, 1 or 0. Used during development to
allow you to easily determine what pixel width looks best for each
column. Which this option is enabled, a button in the lower right
area of the AreaList Pro object is enabled to toggle the headers
between displaying pixel widths and the actual header values.
When AreaList Pro is initially displayed, the column headers are
shown. Click on the button to toggle the headers to display the
pixel width.

When pixel widths are displayed in the headers of the AreaList
Pro area, the cursor will change to display a pixel count when it is
over the AreaList Pro area. If the cursor is moved over one of the
rows in the area and clicked, the count shown in the pointer will
be updated. This value is the necessary height of the AreaList
Pro object to allow the row clicked on to be the bottom one dis-
played. This feature is disabled whenever the column widths are
not displayed. Please read the section “Column Widths” on
page 30 for more information.

DragColumn — Integer, 0, 1, 2, or 3. This parameter controls if,
and how, columns may be dragged.

If the UserSort option of AL_SetSortOpts is disabled, column
dragging will begin immediately after the user clicks in the col-
umn header, and an outline of the column will appear. If user
sorting is enabled, the drag begins when the pointer is moved 20
pixels outside of the column to the left or right, or 30 pixels above
or below the header area. It is up to you to keep track of the new
position of the columns: dragging the first column to the right will
cause the second column to become the first. Future calls to
AreaList Pro code should take these changes into account. See
“AL_GetDragCol ” on page 183 and “Dragging Commands” on
page 129 for more information.

1 column headers display the width in pixels of
each column, and are updated after the user
resizes the column

0 turns the pixel width display off and disables
the button (default)

0 do not allow a column to be dragged (default)
1 allow a column to be dragged within, but not out

of the AreaList Pro object
2 allow a column to be dragged out of, but not

within the AreaList Pro object
3 allow a column to be dragged both within and out

of the AreaList Pro object
AL_SetColOpts 64

Configuration Commands
AcceptDrag — Integer, 1 or 0. This parameter controls whether
columns may be dragged into the AreaList Pro object
AreaName.

AL_SetColOpts can be used in both the Before phase and Dur-
ing phase of a script or procedure.

Examples:
`allow user to resize columns, don't resize columns in the
`During phase, allow column lock, hide the last two columns,
`disable the pixel width display, don't allow or accept column dragging

AL_SetColOpts (eNames;1;0;1;2;0;0;0)

`don't allow user to resize columns, resize columns in the
`During phase, allow column lock, don't hide any columns,
`enable the pixel width display, don't allow column dragging, but accept

dragged columns
AL_SetColOpts (eNames;0;1;1;0;1;0;1)

AL_SetCellOpts

AL_SetCellOpts (AreaName; CellSelection; MoveWithData; Optimization)

AL_SetCellOpts is used to set options specific to cells.

CellSelection — Integer, 0, 1, 2.

Note: when CellSelection is set to a value of 1 or 2, row dragging
is disabled.

1 this AreaList Pro object will accept a col-
umn dragged from another AreaList Pro
object

0 this AreaList Pro object will not accept a
column (default)

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
CellSelection integer cell selection mode
MoveWithData integer move cell attributes with data
Optimization integer optimize cell attribute allocation

0 row selection is enabled according to the
MultiLine option of AL_SetRowOpts
(page 59) (default)

1 only one cell at a time may be selected (sin-
gle cell selection)

2 many cells may be selected, contiguous or
discontiguous (multiple cell selection)
AL_SetCellOpts 65

Configuration Commands
MoveWithData — Integer, 0 or 1. This parameter is used with
AL_SetCellStyle (page 79) and AL_SetCellColor (page 81).

Optimization — Integer, 1 to 5. The default is 1.

A value of 1 means that the block used to store the cell attributes
(per row) is grown a small chunk at a time. A value of 5 means
that the block used to store the cell attributes is grown a large
chunk at a time. Thus a lower number means that setting cell
attributes may be slower but will (potentially) require less mem-
ory. Conversely, a higher number means that setting cell
attributes may be faster but require more memory.

Optimization should not be set above 1 unless the number of col-
umns in the AreaList Pro object is greater than 10 and a large
percentage of the cells will have their cell attributes set.

Example:
AL_SetCellOpts (eList;1;1;1) `single cell selection only, move data with cells,

normal optimization

AL_SetMiscOpts

AL_SetMiscOpts (AreaName;HideHeaders;AreaSelected;PostKey;ShowFooters)

AL_SetMiscOpts is used to control several AreaList Pro
options.

HideHeaders — Integer, 1 or 0.

When HideHeaders is 1, the AllowColumnResize parameter of
AL_SetColOpts (page 62) is set to 0 internally by AreaList Pro.

1 cell attributes (not including cell selection)
will move with the cell after sorting, row
dragging, or column dragging (default)

0 cell attributes will not move

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
HideHeaders integer hide the column headers
AreaSelected integer visual cue that external area is selected
PostKey string character to post to execute script
ShowFooters integer show the column footers

1 the column headers will not be displayed
0 the column headers will be displayed (default)
AL_SetMiscOpts 66

Configuration Commands
AreaSelected — Integer, 0, 1, or 2. This parameter controls how
the AreaList Pro object is displayed when it is “selected” (i.e., the
active layout object).

PostKey — One character string. AreaList Pro causes the script
of an AreaList Pro external object to run by posting a keyboard
event to the Macintosh Event Queue. This parameter is used to
specify what character to post. The default is the backslash char-
acter (“\”). Please read the section “AreaList Pro’s PostKey” on
page 145 for more information.

ShowFooters — Integer, 1 or 0. This parameter controls whether
footers are displayed for the AreaList Pro object AreaName.
Footers are displayed using AL_SetFooters (page 51).

See “Footers” on page 29, AL_SetFooters (page 51) and
AL_SetFtrStyle (page 57) for more information about footers.

AL_SetMiscOpts can be used in both the Before phase and
During phase of a script or procedure.

Examples:
`don't hide the headers, show the area selected cue,
`use the default post-key, don't show footers

AL_SetMiscOpts (eNames;0;1;"";0)

`hide the headers, don't show the area selected cue,
`use <cmd>open bracket for the post-key, show footers

AL_SetMiscOpts (eNames;1;0;"[";1)

0 no indication will be given to the user that the
external area is selected (default)

1 a 2-pixel wide border will be drawn around the
external area when it is selected

2 a System 7 style selection rectangle will be
drawn around the external area when it is
selected

1 footers will be displayed below each column
0 footers will not be displayed (default)

IncludeHiddenCols integer include hidden columns in Edit menu copy
FieldDelimiter string field separator for Edit menu copy
RecordDelimiter string record separator for Edit menu copy
FieldWrapper string field wrapper for Edit menu copy
AL_SetMiscOpts 67

Configuration Commands
AL_SetCopyOpts

AL_SetCopyOpts (AreaName;IncludeHiddenCols;FieldDelimiter;RecordDelimiter;

FieldWrapper)

AL_SetCopyOpts is used to control several AreaList Pro
options pertaining to copying the selected line(s) when “Copy” is
selected from the Edit menu. Because of limitations of the Macin-
tosh clipboard, picture columns cannot be copied to the
clipboard; a blank field will be copied instead.

IncludeHiddenCols — Integer, 1 or 0.

FieldDelimiter — One character string. The delimiter used to
separate fields when the user copies selected lines to the clip-
board. Default is the TAB character (ASCII 9).

RecordDelimiter — One character string. The delimiter used to
separate lines when the user copies selected lines to the clip-
board. Default is the carriage return character (ASCII 13).

FieldWrapper — One character string. The character used to
“wrap” fields when the user copies selected lines to the clip-
board. This character will be placed both before and after each
field. If FieldWrapper is the null string, then no character will
wrap the fields. The default is that no character will wrap the
fields.

FieldWrapper will be especially useful on Windows because pro-
grams such as Excel or Works expect text to be pasted in with
commas separating, and quotes wrapping the fields.

AL_SetCopyOpts can be used in both the Before phase and
During phase of a script or procedure.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout

1 any values in hidden columns will be included when
the user uses the Edit menu Copy command

0 any values in hidden columns will not be included
when the user uses the Edit menu Copy command
(default)
AL_SetCopyOpts 68

Configuration Commands
Examples:
`include hidden columns in Edit menu Copy,
`use the default Field and Record delimiters for Edit menu Copy

AL_SetCopyOpts (eNames;1;"";"")

`don't include hidden columns in Edit menu Copy,
`use different Field and Record delimiters for Edit menu Copy

AL_SetCopyOpts (eNames;0;Char(241);Char(242))

AL_SetSortOpts

AL_SetSortOpts (AreaName;SortInDuring;UserSort;AllowSortEditor;SortEditorPrompt;

ShowSortOrder)

AL_SetSortOpts is used to control several AreaList Pro options
pertaining to sorting.

SortInDuring — Integer, 1 or 0.

UserSort — Integer, 0, 1, 2 or 3.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
SortInDuring integer automatically sort in the During phase
UserSort integer allow user to sort
AllowSortEditor integer allow user to sort with editor
SortEditorPrompt string set the prompt of the Sort Editor
ShowSortOrder integer show the current sort order in the Sort Editor

1 whenever an array or field command is called in
the During phase, the columns will be automat-
ically sorted based upon the current sort order

0 no sorting will be done automatically in the Dur-
ing phase (default)

0 Disable the user sort buttons in the column
headers

1 Enable the user sort buttons in the column
headers (default). The sort buttons will
highlight when clicked, and the columns
sorted based on the values in the column
which was clicked. The AreaList Pro area's
script will run, with ALProEvt = - 1.

2 Bypass the user sort buttons in the column
headers. The sort buttons will highlight
when clicked, but no sort will be performed.
The AreaList Pro area's script will run, with
ALProEvt = - 1. This allows you to proce-
durally check for a click of a sort button by
the user and perform your own sort action.
AL_SetSortOpts 69

Configuration Commands
If the value of UserSort is 1, 2 or 3, and the column contains a
picture column, the column header will highlight, but no sort will
occur, and the script for the AreaList Pro area will not run.

If the value of UserSort is 1 or 3, and the column contains a field
from a related one file, the column header will highlight, but no
sort will occur, and the script for the AreaList Pro area will not
run. If the value of UserSort is 2, and the column contains a field
from a related one file, the column header will highlight, but no
sort will occur, and the script for the AreaList Pro area will run.

When the user sort is bypassed by setting UserSort to 2,
AL_GetSort (page 149) is still used to get the column header
that was clicked on.

AllowSortEditor — Integer, 1 or 0.

The AreaList Pro Sort Editor can also be displayed with
AL_ShowSortEd (page 157).

SortEditorPrompt — String (optional). This is the prompt that will
be displayed at the top of the AreaList Pro Sort Editor. The
default is “AreaList™ Pro Sort Editor”. The default prompt is
stored in a DITL resource which is part of the AreaList Pro exter-
nal. If you are familiar with ResEdit, you can change this default
value.

ShowSortOrder — Integer, 1 or 0.

3 Enable the user sort buttons for indexed
fields only. If the field in the column is not
indexed, the sort button will highlight when
clicked, but no sort will be performed. If the
field in the column is indexed, the fields will
be sorted based on the values in the col-
umn which was clicked. The AreaList Pro
area's script will run, with ALProEvt = - 1. If
arrays, not fields, are displayed in the
object then all of the sort buttons will be
enabled.

1 the user can command-click in the header to
display the AreaList Pro Sort Editor

0 the user is not able to display the Sort Editor
(default)

1 the current sort order will be displayed in the
Sort Order list whenever the AreaList Pro Sort
Editor is displayed

0 the Sort Order list will be empty whenever the
AreaList Pro Sort Editor is displayed (default)
AL_SetSortOpts 70

Configuration Commands
AL_SetSortOpts can be used in both the Before phase and
During phase of a script or procedure.

Examples:
`don't automatically sort in During phase, allow user to sort with buttons,
`allow user to invoke Sort Editor, display the default Sort Editor prompt,
`don't show the current sort order in the Sort Editor

AL_SetSortOpts (eNames;0;1;1;"";0)

`automatically sort in During phase, don't allow user to sort with buttons,
`allow user to invoke Sort Editor, change the Sort Editor prompt,
`show the current sort order in the Sort Editor

AL_SetSortOpts (eNames;1;0;1;"People Sort Order";1)

AL_SetForeClr

AL_SetForeClr (AreaName;ColumnNum;HdrForeColor1;HdrForeColor2;ListForeColor1;

ListForeColor2;FtrForeColor1;FtrForeColor2)

AL_SetForeClr is used to specify the foreground color for a col-
umn header, a list area column, and a column footer.

AreaList Pro has its own palette, with the following colors: white,
black, blue, green, yellow, magenta, red, cyan, gray, light gray.

ColumnNum — The column for which to set the foreground color.
Use a value of zero (0) for ColumnNum to apply the parameters
to all columns.

HdrForeColor1 — String, name of the color in AreaList Pro’s pal-
ette. This will be the foreground color for the column header. If
the name is not in AreaList Pro’s palette or it is a null string, then
HdrForeColor2 will be used.

HdrForeColor2 — Integer, 1 to 256. The color at this position in
4D’s palette will be used for the foreground color for the column
header.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer number of column
HdrForeColor1 string header foreground color from AreaList Pro’s palette
HdrForeColor2 integer header foreground color from 4D’s palette
ListForeColor1 string list foreground color from AreaList Pro’s palette
ListForeColor2 integer list foreground color from 4D’s palette
FtrForeColor1 string footer foreground color from AreaList Pro’s palette
FtrForeColor2 integer footer foreground color from 4D’s palette
AL_SetForeClr 71

Configuration Commands
ListForeColor1 — String, name of the color in AreaList Pro’s pal-
ette. This will be the foreground color for the column. If the name
is not in AreaList Pro’s palette or it is a null string, then
ListForeColor2 will be used.

ListForeColor2 — Integer, 1 to 256. The color at this position in
4D’s palette will be used for the foreground color for the column.

FtrForeColor1 — String, name of the color in AreaList Pro’s pal-
ette. This will be the foreground color for the column footer. If the
name is not in AreaList Pro’s palette or it is a null string, then
FtrForeColor2 will be used.

FtrForeColor2 — Integer, 1 to 256. The color at this position in
4D’s palette will be used for the foreground color for the column
footer.

If AL_SetForeClr is not called, the default is black for the
header, list, and footer foreground colors.

AL_SetForeClr can be used in both the Before phase and Dur-
ing phase of a script or procedure.

Examples:
`red for column header foreground,
`light gray for column foreground (all columns)
`Blue for footer foreground

AL_SetForeClr (eNames;0;"Red";0;"Light Gray";0;"Blue";0)

`green for column header foreground,
`13th color from 4D's palette for column foreground (4th column)
`7th color from 4D's palette for footer foreground

AL_SetForeClr (eNames;4;"Green";0;"";13;"";7)
AL_SetForeClr 72

Configuration Commands
AL_SetBackClr

AL_SetBackClr (AreaName;HdrBackColor1;HdrBackColor2;ListBackColor1;ListBackCol

or2; FtrBackColor1;FtrBackColor2)

AL_SetBackClr is used to specify the background color for the
header, list area, and footer. While the foreground color can be
specified for each column, the background color for the header,
list area, or footer can only be specified for all columns.

AreaList Pro has its own palette, with the following colors: white,
black, blue, green, yellow, magenta, red, cyan, gray, light gray.

HdrBackColor1 — String, name of the color in AreaList Pro’s pal-
ette. This will be the background color for the column header. If
the name is not in AreaList Pro’s palette or it is a null string, then
HdrBackColor2 will be used.

HdrBackColor2 — Integer, 1 to 256. The color at this position in
4D’s palette will be used for the background color for the column
header.

ListBackColor1 — String, name of the color in AreaList Pro’s pal-
ette. This will be the background color for the column. If the name
is not in AreaList Pro’s palette or it is a null string, then
ListBackColor2 will be used.

ListBackColor2 — Integer, 1 to 256. The color at this position in
4D’s palette will be used for the background color for the column.

FtrBackColor1 — String, name of the color in AreaList Pro’s pal-
ette. This will be the background color for the footer. If the name
is not in AreaList Pro’s palette or it is a null string, then
FtrBackColor2 will be used.

FtrBackColor2 — Integer, 1 to 256. The color at this position in
4D’s palette will be used for the background color for the footer.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
HdrBackColor1 string header background color from AreaList Pro’s palette
HdrBackColor2 integer header background color from 4D’s palette
ListBackColor1 string list background color from AreaList Pro’s palette
ListBackColor2 integer list background color from 4D’s palette
FtrBackColor1 string footer background color from AreaList Pro’s palette
FtrBackColor2 integer footer background color from 4D’s palette
AL_SetBackClr 73

Configuration Commands
If AL_SetBackClr is not called, the default is white for the
header, list, and footer background colors.

AL_SetBackClr can be used in both the Before phase and Dur-
ing phase of a script or procedure.

Examples:
`light gray for header background,
`white for list background
`gray for the footer background

AL_SetBackClr (eNames;"Light Gray";0;"White";0;"Gray";0)

`white for header background,
`13th color from 4D's palette for list background
`Color 246 from 4D's palette for footer background

AL_SetBackClr (eNames;"White";0;"";13;"";246)

AL_SetDividers

AL_SetDividers (AreaName;ColDividerPattern;ColDividerColor1;ColDividerColor2;

RowDividerPattern;RowDividerColor1;RowDividerColor2)

AL_SetDividers is used to set the pattern and color of the col-
umn and row dividers.

These are the available patterns: white, black, gray, light gray,
and dark gray.

AreaList Pro has its own palette, with the following colors: white,
black, blue, green, yellow, magenta, red, cyan, gray, light gray.

ColDividerPattern — String, name of the pattern for the column
divider. If a null string is used then no column divider will be dis-
played. Do not use a Light Gray or Dark Gray pattern for the
column divider. For technical reasons, this will cause the column
divider to change appearance as the list is scrolled.

ColDividerColor1 — String, name of the color in AreaList Pro’s
palette. This will be the color for the column divider. If the name is

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColDividerPattern string pattern of the column divider
ColDividerColor1 string color from AreaList Pro’s palette for the column divider
ColDividerColor2 integer color from 4D’s palette for the column divider
RowDividerPattern string pattern of the row divider
RowDividerColor1 string color from AreaList Pro’s palette for the row divider
RowDividerColor2 integer color from 4D’s palette for the row divider
AL_SetDividers 74

Configuration Commands
not in AreaList Pro’s palette or it is a null string, then
ColDividerColor2 will be used.

ColDividerColor2 — Integer, 1 to 256. The color at this position in
4D’s palette will be used for the column divider.

RowDividerPattern — String, name of the pattern for the row
divider. If a null string is used then no row divider will be
displayed.

RowDividerColor1 — String, name of the color in AreaList Pro’s
palette. This will be the color for the row divider. If the name is
not in AreaList Pro’s palette or it is a null string, then
RowDividerColor2 will be used.

RowDividerColor2 — Integer, 1 to 256. The color at this position
in 4D’s palette will be used for the row divider.

If AL_SetDividers is not called, then no column or row dividers
will be displayed.

AL_SetDividers can be used in both the Before phase and Dur-
ing phase of a script or procedure.

Examples:
`display solid gray column dividers and no row dividers

AL_SetDividers (eNames;"Black";"Gray";0;"";"";0)

`display column and row dividers in a gray pattern
AL_SetDividers (eNames;"Gray";"Black";0;"Gray";"Black";0)

AL_SetRowStyle

AL_SetRowStyle (AreaName;RowNum;StyleNum;FontName)

AL_SetRowStyle is used to set the type style and font for a par-
ticular row. It will override the style and font settings for all
columns in that row. The size settings of each column will still
apply.

RowNum — Integer. The row for which to set the style. Use a

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
RowNum integer number of row
StyleNum integer style of the font
FontName string name of the font
AL_SetRowStyle 75

Configuration Commands

value of zero (0) for RowNum to apply the parameters to all rows.

StyleNum — Integer. This parameter is used to set the style for
the row. The different values in the table below can be added
together to produce combinations of styles. For example, bold
italic has a value of 3.

If a row style has been previously set, it may be removed by set-
ting StyleNum to -1. This may also be applied to all rows by
passing a zero (0) for the row number. This will have no effect on
rows that have not been previously set.

The row style may be left unchanged by setting StyleNum to 256.

FontName — String. This parameter specifies the font for a row.
If a row font has been previously set, it may be removed by set-
ting FontName to “-1”. Note that the value is a string, not a
number. This may also be applied to all rows by passing a zero
(0) for the row number. This will have no effect on rows that have
not been previously set.

The row font may be left unchanged by setting FontName to the
empty string ("").

See the MoveWithData option of AL_SetRowOpts (page 59).
This controls whether row styles stay with their rows whenever
sorting or dragging occurs.

Examples:
AL_SetRowStyle (eNames;10;2;"") `Set row 10 to be italic
AL_SetRowStyle (eNames;0;1;"Helvetica") `Set all rows to be bold, Helvet-

ica
AL_SetRowStyle (eNames;0;-1;"-1") `Reset all row styles. Column settings

will be used

Style Number

Plain 0

Bold 1

Italic 2

Underline 4

Outline 8

Shadow 16

Condensed 32

E x t e n d e d 64
AL_SetRowStyle 76

Configuration Commands
`set the 12th row to display the Times font in bold italic style
AL_SetRowStyle (eList;12;3;"Times")
If(During)

AL_UpdateArrays (eList;-1)
End if

AL_SetRowColor

AL_SetRowColor (AreaName;RowNum;RowForeColor1;RowForeColor2;

RowBackColor1; RowBackColor2)

AL_SetRowColor is used to specify the foreground and back-
ground color for a row. It will override the foreground and
background color settings for all columns in that row.

AreaList Pro has its own palette, with the following colors: white,
black, blue, green, yellow, magenta, red, cyan, gray, light gray.

RowNum — Integer. The row for which to set the foreground
color. Use a value of zero (0) for RowNum to apply the parame-
ters to all rows.

RowForeColor1 — String. Name of the color in AreaList Pro’s
palette. This will be the foreground color for the row. If the name
is not in AreaList Pro’s palette or it is a null string, then
RowForeColor2 will be used.

RowForeColor2 — Integer, 1 to 256. Foreground color number
for the row (from 4D’s palette). If a row color has been previously
set, it may be removed by setting RowForeColor1 to an empty
string (“”), and RowForeColor2 to -1. This may also be applied to
all rows by passing a zero (0) for the RowNum . This will have no
effect on rows that have not been previously set.

The row foreground color may be left unchanged by setting
RowForeColor1 to the empty string (""), and RowForeColor2 to
0.

RowBackColor1 — String. Name of the color in AreaList Pro’s
palette. This will be the background color for the row. If the name

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
RowNum integer number of row
RowForeColor1 string row foreground color from AreaList Pro’s palette
RowForeColor2 integer row foreground color from 4D’s palette
RowBackColor1 string row background color from AreaList Pro’s palette
RowBackColor2 integer row background color from 4D’s palette
AL_SetRowColor 77

Configuration Commands
is not in AreaList Pro’s palette or it is the empty string (""), then
RowBackColor2 will be used.

RowBackColor2 — Integer, 1 to 256. Background color number
for the cell (from 4D’s palette). If a row background color has
been previously set, it may be removed by setting
RowBackColor1 to the empty string (""), and RowBackColor2 to -
1. This may also be applied to all rows by passing a zero (0) for
the row number. This will have no effect on rows that have not
been previously set.

The row background color may be left unchanged by setting
RowBackColor1 to the empty string (""), and RowBackColor2 to
0.

See the MoveWithData option of AL_SetRowOpts (page 59).
This controls whether row colors stay with their rows whenever
sorting or dragging occurs.

Examples:
AL_SetRowColor (eNames;10;"Blue";0;"Light gray";0) `Set row 10 to fore-

ground blue, background light gray
AL_SetRowColor (eNames;0;"Blue";0;"Yellow";0) `Set all rows to blue fore-

ground, yellow background
AL_SetRowColor (eNames;0;"";-1;"";-1) `Reset all row colors to use the col-

umn color settings
`set the 10th row to display a foreground color of Blue and background color

of Light gray
AL_SetRowColor (eList;10;"Blue";0;"Light Gray";0)

`set the 12th row to display a foreground color of Green and the current
background color

AL_SetRowColor (eList;12;"Green";0;"";0)
If(During)

AL_UpdateArrays (eList;-1)
End if
AL_SetRowColor 78

Configuration Commands
AL_SetCellStyle

AL_SetCellStyle (AreaName; Cell1Col; Cell1Row; Cell2Col; Cell2Row; CellArray;

StyleNum; FontName)

AL_SetCellStyle is used to set the font and/or style of a specific
cell, range of cells, or list of cells.

◆ To specify a single cell. If Cell1Col and Cell1Row are
greater than 0 and Cell2Col or Cell2Row are less than or
equal to 0 then only [Cell1Col, Cell1Row] will be set.

◆ To specify a range of cells. If Cell1Col and Cell1Row are
greater than 0 and Cell2Col and Cell2Row are greater than 0
then the range of cells from [Cell1Col, Cell1Row] to
[Cell2Col, Cell2Row] will be set.

◆ To specify discontiguous cells. If Cell1Col or Cell1Row are
less than or equal to 0 then the cells in CellArray will be set.

CellArray — two-dimensional integer array. The first dimension
must be two. The first array is for the column indices and the sec-
ond array is for the row indices. The second dimension must be
the same as the number of cells that are to be selected. See the
following illustration.

StyleNum — Integer. This parameter is used to set the style for
the specified cells. The values shown below can be added

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
Cell1Col integer first cell column
Cell1Row integer first cell row
Cell2Col integer last cell column
Cell2Row integer last cell row
CellArray array discontiguous cells
StyleNum integer style of the font
FontName string name of the font

0 1 2

0
1
2

n

Cell 1

Cell 2

Cell n

0
1
2

n

CellArray

Column
Array

Row
Array
AL_SetCellStyle 79

Configuration Commands

together to combine styles.

If a cell style has been previously set, the style may be removed
by setting StyleNum to -1. The cell style may be left unchanged
by setting StyleNum to 256.

FontName — String. If a cell font has been previously set, it may
be removed by setting FontName to “-1”. Note that the value is a
string, not a number. The cell font may be left unchanged by set-
ting FontName to the empty string ("").

See the MoveWithData option of AL_SetCellOpts (page 65).
This controls whether cell styles and fonts stay with their cells
whenever sorting, row dragging, or column dragging occurs.

Example:
 `set the currently highlighted cell(s) to be bold
ARRAY INTEGER (aInt;2;0)
$Result:=AL_GetCellSel (eList;vCol1;vRow1;vCol2;vRow2;aInt)
If($Result=1)

AL_SetCellStyle (eList;vCol1;vRow1;0;0;aInt;1;"")
If(During)

AL_UpdateArrays (eList;-1)
End if

End if

Style Number

Plain 0

Bold 1

Italic 2

Underline 4

Outline 8

Shadow 16

Condensed 32

E x t e n d e d 64
AL_SetCellStyle 80

Configuration Commands
AL_SetCellColor

AL_SetCellColor (AreaName;Cell1Col;Cell1Row;Cell2Col;Cell2Row;CellArray;

ForeColor1; ForeColor2;BackColor1;BackColor2)

AL_SetCellColor is used to set the foreground color and/or
background color of a specific cell, range of cells, or list of cells.

◆ To specify a single cell. If Cell1Col and Cell1Row are
greater than 0 and Cell2Col or Cell2Row are less than or
equal to 0 then only [Cell1Col, Cell1Row] will be set.

◆ To specify a range of cells. If Cell1Col and Cell1Row are
greater than 0 and Cell2Col and Cell2Row are greater than 0
then the range of cells from [Cell1Col, Cell1Row] to
[Cell2Col, Cell2Row] will be set.

◆ To specify discontiguous cells. If Cell1Col or Cell1Row are
less than or equal to 0 then the cells in CellArray will be set.

CellArray — two-dimensional integer array. The first dimension
must be two. The first array is for the column indices and the sec-
ond array is for the row indices. The second dimension must be
the same as the number of cells that are to be selected. See the
following illustration.

ForeColor1 — String. Name of the color in AreaList Pro’s palette.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
Cell1Col integer first cell column
Cell1Row integer first cell row
Cell2Col integer last cell column
Cell2Row integer last cell row
CellArray array discontiguous cells
ForeColor1 string foreground color from AreaList Pro’s palette
ForeColor2 integer foreground color from 4D’s palette
BackColor1 string background color from AreaList Pro’s palette
BackColor2 integer background color from 4D’s palette

0 1 2

0
1
2

n

Cell 1

Cell 2

Cell n

0
1
2

n

CellArray

Column
Array

Row
Array
AL_SetCellColor 81

Configuration Commands
This will be the foreground color for the cell. If the name is not in
AreaList Pro’s palette or it is the empty string (""), then
ForeColor2 will be used.

ForeColor2 — Integer, 1 to 256. Foreground color number for the
cell (from 4D’s palette). If a cell foreground color has been previ-
ously set, it may be removed by setting ForeColor1 to the empty
string (""), and ForeColor2 to -1. The cell foreground color may
be left unchanged by setting ForeColor1 to the empty string (""),
and ForeColor2 to 0.

BackColor1 — String. Name of the color in AreaList Pro’s pal-
ette. This will be the background color for the cell. If the name is
not in AreaList Pro’s palette or it is the empty string (""), then
BackColor2 will be used.

BackColor2 — Integer, 1 to 256. Background color number for
the cell (from 4D’s palette). If a cell background color has been
previously set, it may be removed by setting BackColor1 to the
empty string (""), and BackColor2 to -1. The cell background
color may be left unchanged by setting BackColor1 to the empty
string (""), and BackColor2 to 0.

The foreground and background colors for a cell may be set dif-
ferently during data entry by calling AL_SetCellColor in the
entry started procedure and again in the entry finished proce-
dure to restore the colors.

See the MoveWithData option of AL_SetCellOpts (page 65).
This controls whether cell foreground and background colors
stay with their cells whenever sorting, row dragging, or column
dragging occurs.

Example:
`set all negative values in the third column, a real array, to have a foreground

color of red
ARRAY INTEGER (aInt;2;0) `MUST initialize a two-dimensional integer array
For ($i;1;Size of array (aRevenue)) `check each element in the array

If(aRevenue{$i}<0) `is the value in this element negative?
AL_SetCellColor (eList;3;$i;0;0;aInt;"Red";0;"";0) `if so, then show it in

Red
End if

End for
If(During)

AL_UpdateArrays (eList;-1)
End if
AL_SetCellColor 82

Configuration Commands

AL_GetCellStyle

AL_GetCellStyle (AreaName; CellCol; CellRow; StyleNum; FontName)

AL_GetCellStyle is used to get the font and/or style of a particu-
lar cell. It will not get the column or row font and/or style.

StyleNum — Integer. This parameter returns the style number for
the cell. The number can be a sum of several individual styles.
For example, bold italic has a value of 3.

If a cell style has not been previously set, the value of StyleNum
will be -1.

FontName — String. If a cell font has not been previously set, the
value of FontName will be “-1”. Note that the value is a string, not
a number.

Example:
`get the style of the cell in the third column, first row

AL_GetCellStyle (eList;3;1;vStyle;vFont)

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
CellCol integer cell column
CellRow integer cell row
StyleNum integer style of the font
FontName string name of the font

Style Number

Plain 0

Bold 1

Italic 2

Underline 4

Outline 8

Shadow 16

Condensed 32

E x t e n d e d 64
AL_GetCellStyle 83

Configuration Commands
AL_SetCellSel

AL_SetCellSel (AreaName; Cell1Col; Cell1Row; Cell2Col; Cell2Row; CellArray)

AL_SetCellSel is used to set the cell selection. Use the CellSe-
lection option of AL_SetCellOpts (page 65) to specify a cell
selection mode prior to using this command.

◆ To select a single cell. If Cell1Col and Cell1Row are greater
than 0 and Cell2Col or Cell2Row are less than or equal to 0
then only [Cell1Col, Cell1Row] will be selected.

◆ To select a range of cells. If Cell1Col and Cell1Row are
greater than 0 and Cell2Col and Cell2Row are greater than 0
then the range of cells from [Cell1Col, Cell1Row] to
[Cell2Col, Cell2Row] will be selected.

◆ To select discontiguous cells. If Cell1Col or Cell1Row are
less than or equal to 0 then the cells in CellArray will be
selected.

CellArray — two-dimensional integer array. The first dimension
must be two. The first array is for the column indices and the sec-
ond array is for the row indices. The second dimension must be
the same as the number of cells that are to be selected. See the
following illustration.

Examples:
AL_SetCellSel (eArea;1;3;0;0) `select cell at column 1, row 3

AL_SetCellSel (eArea;2;2;5;5) `select cells from column 2, row 2 to column
5, row 5

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
Cell1Col integer first cell column
Cell1Row integer first cell row
Cell2Col integer last cell column
Cell2Row integer last cell row
CellArray array discontiguous cells

0 1 2

0
1
2

n

Cell 1

Cell 2

Cell n

0
1
2

n

CellArray

Column
Array

Row
Array
AL_SetCellSel 84

Configuration Commands
ARRAY INTEGER (aCellSelect;2;4)
aCellSelect{1}{1}:=1 `column 1
aCellSelect{2}{1}:=1 `row 1
aCellSelect{1}{2}:=1 `column 1
aCellSelect{2}{2}:=2 `row 2
aCellSelect{1}{3}:=2 `column 2
aCellSelect{2}{3}:=5 `row 5
aCellSelect{1}{4}:=2 `column 2
aCellSelect{2}{4}:=6 `row 6
AL_SetCellSel (eArea;0;0;0;0;aCellSelect) `select the cells in aCellSelect

AL_GetCellColor

AL_GetCellColor (AreaName;CellCol;CellRow;ForeColor2;BackColor2)

AL_GetCellColor is used to get the foreground color and/or
background color of a specific cell, range of cells, or list of cells.
It will not get the column or row foreground color and/or back-
ground color.

For this command to function correctly the cell foreground and
background colors must have been set from 4D’s palette. In
other words, the ForeColor2 and BackColor2 parameters must
have been used in the command AL_SetCellColor (page 81).

ForeColor2 — Integer, 1 to 256. Foreground color number of the
cell (from 4D’s palette). If a cell foreground color has not been
previously set, the value of ForeColor2 will be -1.

BackColor2 — Integer, 1 to 256. Background color number of the
cell (from 4D’s palette). If a cell background color has not been
previously set, the value of BackColor2 will be -1.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
CellCol integer cell column
CellRow integer cell row
ForeColor2 integer foreground color from 4D’s palette
BackColor2 integer background color from 4D’s palette
AL_GetCellColor 85

Configuration Commands
AL_SetSort

AL_SetSort (AreaName;Column1; … ;ColumnN)

AL_SetSort is used to perform a multi-level sort.

Column — Integer. These parameters specify the columns to use
for the sort criteria.

A Column greater than 0 causes an ascending sort to be per-
formed upon that column, while a Column less than 0 causes a
descending sort to be performed upon that column. If a Column
is 0, or it is a picture array or field, or it contains a field from a
related one file, then all subsequent columns will be ignored.

If the first Column has a value other than 0, then its header will
be underlined. If the first Column has a value of 0, then AreaList
Pro will not sort the columns and no header will be underlined.

If the first two Columns have the same value, then AreaList Pro
will not sort the columns, but will underline the header for the first
Column.

You can determine what columns a user has sorted using
AL_GetSort (page 149).

Examples:
AL_SetSort (eNames;3;4;7) `sort on columns 3, 4, and 7 (all ascending)
AL_SetSort (eContacts;-1;3;-2) `sort on columns 1 (descending), 3 (ascend-

ing),
 `and 2 (descending)
AL_SetSort (eList;0) `don’t sort, and don’t underline any header
AL_SetSort (eNames;2;2) `don’t sort, but do underline the header for col-

umn 2

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
Column integer column to perform sort upon
AL_SetSort 86

Configuration Commands
AL_SetLine

AL_SetLine (AreaName;LineNum)

AL_SetLine is used to set the line to be highlighted. This com-
mand is used in the Before phase to set up the initial display of
an AreaList Pro object. You can also use it in the During phase
to control what element is selected. If this command is not used,
then AreaList Pro will display the columns with the first line
selected.

AL_SetLine should only be used with an AreaList Pro object in
single-line mode. If AreaName is in multi-line mode, you must
use AL_SetSelect (page 87).

LineNum — Integer. This parameter specifies what line to
highlight.

AL_SetLine can be used in both the Before phase and During
phase of a script or procedure.

Example:
Case of

:(Before)
$Error:=AL_SetArraysNam (eList;1;3;"aFN";"aLN";"aComp")
AL_SetLine (eList;3) `highlight 3rd line

End case

AL_SetSelect

AL_SetSelect (AreaName;RowsToSelect)

AL_SetSelect is used to set the lines to be highlighted. This
command is used in the Before phase to setup the initial display
of an AreaList Pro object. You can also use it in the During
phase to control what elements are selected. If this command is
not used, then AreaList Pro will display the columns with no lines

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
LineNum integer line number to select (highlight)

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
RowsToSelect integer array contains element numbers to select (highlight)

when the Multi-Line option is enabled
AL_SetLine 87

Configuration Commands
selected.

AL_SetSelect should only be used with an AreaList Pro object
in multi-line mode. If AreaName is in single-line mode, you must
use AL_SetLine (page 87).

RowsToSelect— Integer array. This parameter contains a list of
rows which you wish to select, or highlight.

AL_SetSelect can be used in both the Before phase and Dur-
ing phase of a script or procedure.

Example:
`eNames AreaList Pro object script

Case of
:(Before)

ARRAY INTEGER (aLines;2) `create an integer array with 2 elements
aLines{1}:=1 `set line 1 to be highlighted
aLines{2}:=3 `and line 3 to be highlighted
$Error:=AL_SetArraysNam (eNames;1;2;"aFN";"aLN") `specify arrays to

display
AL_SetSelect (eNames;aLines) `specify the lines to highlight

End case

AL_SetScroll

AL_SetScroll (AreaName;VertScroll;HorizScroll)

AL_SetScroll is used to set the position of the thumb in the ver-
tical and horizontal scroll bars.

VertScroll — Integer. This parameter represents the element
number to display at the top of the AreaList Pro display.

HorizScroll — Integer. This parameter represents the column
number to display at the left of the AreaList Pro display.

The value passed to HorizScroll represents the actual column
number, including any columns which might be currently locked.
For example, if the two left columns are locked, and you want to
scroll the list one column to the left, so that the fourth column is
adjacent to the 2nd locked column, then the value to pass is four.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
VertScroll integer vertical position (element #) to scroll to
HorizScroll integer horizontal position (column #) to scroll to
AL_SetScroll 88

Configuration Commands
AL_SetScroll can also be used to hide or show the vertical and
the horizontal scroll bar. The possible values to use to hide or
show the scroll bars are shown in the table below. The default is
that both scroll bars are shown.

When using AL_SetScroll to hide or show the scroll bars, either
AL_UpdateArrays (page 46) with UpdateMethod set to -2, or
AL_UpdateFields (page 101) with UpdateMethod set to 2 must
be called.

AL_SetScroll can still be used to set the scroll position even
with the scroll bar(s) hidden.

AreaList Pro automatically hides the horizontal scroll bar if Allow-
ColumnResize in AL_SetColOpts (page 62) is set to 0 and all of
the displayed columns fit within the width of the list area. AreaList
Pro automatically shows the horizontal scroll bar if AllowColumn-
Resize in AL_SetColOpts (page 62) is set to 1 or all of the
displayed columns do not fit within the width of the list area. If the
horizontal scroll bar is shown or hidden manually by passing -1, -
2 or -3 in the HorizScroll parameter of AL_SetScroll , then this
behavior will be permanently disabled for the AreaList Pro object.

Note: Pass values of zero forVertScroll and HorizScroll if the lay-
out page is changing to a page that doesn’t contain the AreaList
Pro object. This is required to avoid interaction problems with 4D,
as 4D doesn’t notify an AreaList Pro object that it isn’t on the cur-
rent layout page.

AL_SetScroll can be used in both the Before phase and During
phase of a script or procedure.

Examples:
`set an AreaList Pro object to display the 15th element
`the object is named eList

AL_SetScroll (eList;15;1)

`Configure the AreaList Pro object not to display the vertical scroll bar
If(Before)

`do any desired setup, then hide the vertical scroll bar

Value VertScroll HorizScroll
>0 Vertical scroll position Horizontal scroll position
 0 Hide when changing pages

(required)
Hide when changing pages
(required)

-1 Hide if shown, Show if hid-
den

Hide if shown, Show if hid-
den

-2 Show Show
-3 Hide Hide
AL_SetScroll 89

Configuration Commands
AL_SetScroll (eList;-1;1)
End if

AL_SetColLock

AL_SetColLock (AreaName;Columns)

AL_SetColLock is used to set the number of columns to lock.
AreaList Pro will not allow more columns to be locked than the
number of displayed columns minus two.

Columns — Integer. This parameter is used to specify the num-
ber of columns to lock.

AL_SetColLock can be used in both the Before phase and Dur-
ing phase of a script or procedure.

Example:
AL_SetColLock (eList;2) `lock the first two columns

AL_SetHeight

AL_SetHeight (AreaName;NumHeaderLines;HeaderHeightPad;NumRowLines;

RowHeightPad;NumFooterLines;FooterHeightPad)

AL_SetHeight is used to set the number of lines of text along
with additional height padding in the header, in the rows, and in
the footer. Only text and string columns can wrap to more than
one line. If NumRowLines is set to 2 or more, text and string ele-
ments will be able to wrap into the number of lines specified for
each row. Note that all rows will be given the same number of
lines regardless of the actual number of lines used by a specific
text or string element.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
Columns integer number of columns to lock

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
NumHeaderLines integer number of text lines in the header
HeaderHeightPad integer extra height for the header
NumRowLines integer number of text lines in each row
RowHeightPad integer extra height for each row
NumFooterLines integer number of text lines in the footer
FooterHeightPad integer extra height for the footer
AL_SetColLock 90

Configuration Commands
Additional padding may be set using RowHeightPad to allow
more space between rows. Text will be centered vertically in the
header or row. Note that the padding applies to the entire row
and not on a line by line basis within the row.

NumHeaderLines — Integer. The number of lines in the header.
Default is 1.

HeaderHeightPad — Integer. The extra height, in pixels, to give
to the header. Default is 2.

NumRowLines — Integer. The number of lines to give to each
row. Default is 1.

RowHeightPad — Integer. The extra height, in pixels, to give to
each row. Default is 0.

NumFooterLines — Integer. The number of lines to give to the
footer. Default is 1.

FooterHeightPad — Integer. The extra height, in pixels, to give to
the footer. Default is 2.

Examples:
AL_SetHeight (eList;1;4;1;2;1;4) `Pad the header by 4 pixels, the rows by 2,

the footers by 4
AL_SetHeight (eList;2;5;2;0;2;0) `Set header lines to 2, pad to 5 pixels, set

row lines to 2, no padding, set footer lines to 2, no padding

AL_SetWinLimits

AL_SetWinLimits (AreaName; EnableResize; MinWidth; MinHeight; MaxWidth;

MaxHeight)

AL_SetWinLimits is used to enable resizing of the AreaList Pro
object and its window, and to set the window’s minimum and
maximum limits.

EnableResize— Integer, 0 or 1. A value of 1 enables resizing of

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
EnableResize integer enable AreaList Pro object and its window to be resized
MinWidth integer minimum width of the window
MinHeight integer minimum height of the window
MaxWidth integer maximum width of the window
MaxHeight integer maximum height of the window
AL_SetWinLimits 91

Configuration Commands
the AreaList Pro object and its window. A value of 0 disables
resizing of the AreaList Pro object and its window.

MinWidth — Integer. This is the minimum width of the window
containing the AreaList Pro object. AreaList Pro will not allow the
window to be sized smaller than this width. If MinWidth will cause
the AreaList Pro object to be less than 100 pixels wide, then Min-
Width will be changed so that the object is exactly 100 pixels
wide.

MinHeight — Integer. This is the minimum height of the window
containing the AreaList Pro object. AreaList Pro will not allow the
window to be sized smaller than this height. If MinHeight will
cause the AreaList Pro object to be less than 100 pixels high,
then MinHeight will be changed so that the object is exactly 100
pixels high.

MaxWidth — Integer. This is the maximum width of the window
containing the AreaList Pro object. AreaList Pro will not allow the
window to be sized larger than this width. MaxWidth must be
greater than or equal to MinWidth and it must be less than or
equal to the right edge of the AreaList Pro object as it is drawn
on the layout.

MaxHeight — Integer. This is the maximum height of the window
containing the AreaList Pro object. AreaList Pro will not allow the
window to be sized larger than this height. MaxHeight must be
greater than or equal to MinHeight and it must be less than or
equal to the bottom edge of the AreaList Pro object as it is drawn
on the layout.

Note: The minimum and maximum width and height apply to the
window and not to the AreaList Pro object itself.

Example:
 `enable resizing for eList and its window
 `set the min width to 200 pixels and the min height to 150 pixels
 `set the max width to 600 pixels and the max height to 400 pixels
AL_SetWinLimits (eList;1;200;150;600;400)
AL_SetWinLimits 92

Configuration Commands
AL_DoWinResize

AL_DoWinResize (AreaName)

AL_DoWinResize is used to resize the AreaName object and its
window. This command must be called when ALProEvt is equal
to -9 (the AreaList Pro object was resized).

Example:
Case of
 : (During)

 Case of
 : (ALProEvt=-9) `eList was resized
 AL_DoWinResize (eList) ` Resize eList and its window

 : (ALProEvt=1) `single click
 `Do something here
 End case `ALProEvt
End case `During

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
AL_DoWinResize 93

Configuration Commands
AL_DoWinResize 94

Field and Record Commands
Field and Record Commands

AreaList Pro uses the new SubselectionToArray command in
4D to get the records for display. This command is available
beginning with 4D v3.5.3. Therefore fields can not be displayed
in an AreaList Pro object when used with an earlier version of
4D.

Up to 255 fields (columns) can be displayed in an AreaList Pro
object.

Using the Field Display Capability

Temporary Arrays

AreaList Pro internally uses interprocess 4D arrays to get the
record data from 4th Dimension. These arrays must be declared
in 4D. A text file has been included that contains these declara-
tions. Simply create a 4D global procedure named
Compiler_ALP and copy these declarations into it. There is no
need to call this procedure from your 4D code, AreaList Pro will
call it for you. This procedure must exist whether your database
is interpreted or compiled.

Do not access the data within these temporary arrays. These
arrays are for AreaList Pro’s internal use only and their contents
may change at any time.

Only 30 arrays of each of the 9 data types that AreaList Pro sup-
ports are declared. If you will be displaying more than 30 fields of
a certain type, then you must add more declarations within the
Compiler_ALP global procedure. Conversely, you may remove
some of these declarations if you never display fields (or display
very few fields) of a certain type. Be very careful (when adding or
removing declarations) to follow exactly the syntax of the existing
declarations.

Arrays and Fields

To change the display from arrays to fields, first call
AL_RemoveArrays (page 45) to remove all of the arrays before
calling any field commands. To change the display from fields to
arrays, first call AL_RemoveFields (page 101) to remove all of
the fields before calling any array commands.
95

Field and Record Commands
Note: Arrays and fields may not be displayed together in the
same AreaList Pro object. If arrays are displayed in an object,
then the field commands will be ignored. Conversely, if fields are
displayed in an object, then the array commands will be ignored.

Fields from a Related One File

Fields from a main file and from related one files may be dis-
played in the same AreaList Pro object. See the commands
AL_SetFile (page 98) and AL_SetFields (page 99) for further
information about displaying fields from related one files.

Redraw and Scrolling

When 4D fields are displayed, the visible rows are cached (held
in memory). This is done to improve redraw speed. Every field
within the visible rows are held in memory so horizontal scrolling
is as fast as when displaying arrays. Vertical scrolling will be
slower since the records not in view have to be retrieved from 4D.

TypeAhead

Keyboard typeahead will be disabled when displaying fields.

Copy rows to the clipboard

Copying rows to the clipboard will not be allowed when display-
ing fields. The “Copy” menu item will be disabled when fields are
displayed.

Enterability

Columns containing fields from a related one file will not be
enterable either by typing or by using popups.

Dragging

When displaying arrays, AreaList Pro will rearrange the rows
automatically when the user drags a row within the list. When
displaying fields, AreaList Pro will not rearrange the rows auto-
matically when the user drags a row within the list. Thus the
MoveWithData option of AL_SetRowOpts (page 59) and the
MoveWithData option of AL_SetCellOpts (page 65) do not
apply when fields are displayed and the user drags a row within
the list.
96

Field and Record Commands
Sorting
◆ Indexed fields will be bold in the Sort Editor.

◆ Fields from related one files will be dimmed in the Sort Editor.

◆ Columns containing fields from a related one file will not be
sorted when their column header is clicked upon.

When fields are displayed the MoveWithData option of
AL_SetRowOpts (page 59) will be ignored when sorting. The
row style and color information will not move with the row when
the AreaList Pro object is sorted.

When fields are displayed the MoveWithData option of
AL_SetCellOpts (page 65) will be ignored when sorting. The
cell style and color information will not move with the cell when
the AreaList Pro object is sorted.

The UserSort option of AL_SetSortOpts (page 69) now
includes a new selector. When UserSort is set to 3 and fields are
being displayed, only columns containing indexed fields may be
sorted by clicking on their column header.

Note: AreaList Pro uses 4th Dimension’s sorting routines when
sorting fields. 4D only uses indices when performing a single
level sort. Indices are ignored when performing a multiple level
sort. Therefore, when fields are being displayed, it would be a
good idea to restrict access to the AreaList Pro Sort Editor when
the selection contains more than about a thousand records.

Maximum Number of Records Displayed

AreaList Pro v6 supports a maximum of 32,750 records dis-
played in an AreaList Pro object. You can display a selection with
a greater number of records, using AL_SetSubSelect
(page 102) to specify what record range within the current selec-
tion you wish to display.

This 32,750 record limit will be removed in a future version of
AreaList Pro.

Performance Issues When Displaying Fields

When AreaList Pro display fields, the automatic column sizing
algorithm uses only the first 20 records (or less, if the selection
contains less than 20 records) in the selection. These records
are always read regardless of whether the columns are automat-
ically or manually sized. Therefore there is no performance
97

Field and Record Commands
penalty using the automatic column sizing algorithm when dis-
playing fields. See “Performance Issues with the Formatting
Commands” on page 40 for more information.

Commands

AL_SetFile

AL_SetFile (AreaName; FileNum) ➞ ErrorCode

AL_SetFile tells AreaList Pro what file is the main file from which
to display records.

This command is only necessary if the field to be displayed in
column one is not from the main file, but from a related one file.
AL_SetFile must be called before any fields have been set, oth-
erwise it will be ignored. If this command is not called, then
AreaList Pro will use the file of the field displayed in column one
as the main file.

ErrorCode — Integer. The possible values are:

Example:
$Error:=AL_SetFile (eList;File(»[People]))

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
FileNum integer number of 4D file
ErrorCode integer error code

0 No error n/a
1 Not a file check to make sure that the file repre-

sented by FileNum does exist
AL_SetFile 98

Field and Record Commands
AL_SetFields

AL_SetFields (AreaName; FileNum; ColumnNum; NumFields; FieldNum1; … ;

FieldNumN) ---> ErrorCode

AL_SetFields tells AreaList Pro what fields to display. Up to fif-
teen fields can be set at a time. Any 4D field type can be used
except sub-files.

Fields from related one files may also be displayed (See
“AL_SetFile ” on page 98). A separate call to AL_SetFields
must be made to set these fields. To display a related one field,
pass the file number of the related one file in the FileNum
parameter.

ErrorCode — Integer. The possible values are:

Examples:
`set up the eList AreaList Pro object with 5 fields, all from the same file

$Error:=AL_SetFields (eList;File(»[People]);1;5;Field(»[People]First Name);
Field(»[People]Last Name); Field(»[People]Salary); Field(»[People]Arrival);
Field(»[People]Male))

`set up the eList AreaList Pro object with 4 fields, the third one from a related
file

$Error:=AL_SetFields (eList;File(»[People]);1;2;Field(»[People]First Name);
Field(»[People]Last Name))

$Error:=AL_SetFields (eList;File(»[Companies]);3;1;Field(»[Compa-

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
FileNum integer number of 4D file
ColumnNum integer column at which to set the first field
NumFields integer number of fields to set (up to 15)
FieldNum integer number of 4D field
ErrorCode integer error code

Value Error Code Action
0 No error n/a
1 Not a file check to make sure that the file repre-

sented by FileNum does exist
2 Not a field check to make sure that the field rep-

resented by FieldNum does exist
3 Wrong type of field sub-files are not allowed
4 Maximum number of

fields exceeded
255 fields is the maximum

5 Wrong 4D version The 4D version must be v3.5.3 or
greater to display fields

6 Not enough memory Increase 4D's RAM partition
AL_SetFields 99

Field and Record Commands
nies]Company Name))
$Error:=AL_SetFields (eList;File(»[People]);4;1;Field(»[People]Salary))

`set up the eList AreaList Pro object with 4 fields, the first one from a related
file

`set the main file since the field to be set in column one is not from the main
file,

`but from a related one file
$Error:=AL_SetFile (eList;File(»[People]))
$Error:=AL_SetFields (eList;File(»[Companies]);1;1;Field(»[Compa-

nies]Company Name))
$Error:=AL_SetFields (eList;File(»[People]);2;3;Field(»[People]First Name);

Field(»[People]Last Name); Field(»[People]Salary))

AL_InsertFields

AL_InsertFields (AreaName; FileNum; ColumnNum; NumFields; FieldNum1; … ;

FieldNumN) ➞ ErrorCode

AL_InsertFields functions the same as AL_SetFields
(page 99), except that the fields are inserted before
ColumnNum.

All subsequent columns will maintain their settings. In other
words, any header text, column styles, etc. will stay with their
corresponding field.

Example:
`add a column to display the first name

$Error:=AL_InsertFields (eList;File(»[People]);4;1;Field(»[People]First
Name)

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
FileNum integer number of 4D file
ColumnNum integer column at which to set the first field
NumFields integer number of fields to set (up to 15)
FieldNum integer number of 4D field
ErrorCode integer error code
AL_InsertFields 100

Field and Record Commands
AL_RemoveFields

AL_RemoveFields (AreaName; ColumnNum; NumFields)

AL_RemoveFields is used to remove fields from AreaList Pro.
NumFields, beginning at ColumnNum, will be removed from the
list.

All subsequent columns will maintain their settings. In other
words, any header text, column styles, etc. will stay with their
corresponding field.

Example:
`remove two columns, beginning at column #4

$Error:=AL_RemoveFields (eList;4;2)

AL_UpdateFields

AL_UpdateFields (AreaName; UpdateMethod)

AL_UpdateFields is used to update AreaList Pro. Use this com-
mand whenever any records of the fields being displayed are
changed (records added, deleted, or modified), but the fields
themselves remain the same.

AL_UpdateFields must be called after modifying the fields and
before any other setup commands (sorting, formatting, etc.).

UpdateMethod — Integer. This parameter tells AreaList Pro how
to update the AreaList Pro object AreaName. The possible val-
ues are:

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column at which to remove the first field
NumFields integer number of fields to remove (up to 255)

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
UpdateMethod integer method to use to update the AreaList Pro object

Value Description When to Use
0 Refresh the AreaList Pro

object, but don’t update any
records, and don't recalcu-
late any values.

When changes are made to format-
ting, color, styles, etc.
AL_RemoveFields 101

Field and Record Commands
AL_SetSubSelect

AL_SetSubSelect (AreaName; FirstRecord; NumRecords)

AL_SetSubSelect is used to tell AreaList Pro to display a differ-
ent subselection of records from the current selection. This
command will have the same effect on the AreaList Pro object as
calling AL_UpdateFields (page 101) with UpdateMethod set to
2, in addition to changing the subselection of records to be dis-
played. Thus if this command is called, there is no need to also
call AL_UpdateFields .

FirstRecord — Longint. This parameter is used to set the first
record in the selection to be displayed in the AreaList Pro object.
If FirstRecord is greater than or equal to the number of records in
the selection, then it will be set to the last record in the selection.
The default is 1.

NumRecords — Longint. This parameter is used to set the num-
ber of records in the selection to be displayed in the AreaList Pro
object. The possible values are:

If NumRecords is greater than 32,750 records and there are
more than 32,750 records from FirstRecord until the end of the
selection, then NumRecords will be set to 32,750. If Num-
Records is greater than the number of records from FirstRecord

1 Refresh the AreaList Pro
object, and update the visi-
ble records, but don't recal-
culate any values.

When changes are made to the con-
tents of the records shown in the vis-
ible rows.

2 Rescan all visible rows and
recalculate all applicable
heights, widths, and other
related values. The scroll
position, and row or cell
selection will be reset.

If column or row resizing is neces-
sary, or you have added or deleted
records pertaining to the displayed
fields. Also if you show or hide either
scroll bar, the headers, or footers.

Value Description When to Use

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
FirstRecord longint the first record to display
NumRecords longint the number of records to display

>= 0 Display this number of records.
-1 Display 32,750 records or the number of records from

FirstRecord until the end of the selection, whichever is
less.
AL_SetSubSelect 102

Field and Record Commands
until the end of the selection, then NumRecords will be set to the
number of records from FirstRecord until the end of the
selection.

If this command is not called, then FirstRecord will be set to 1
and NumRecords will be set to 32,750 records or the number of
records in the selection, whichever is less.

Example:
`set up the eList AreaList Pro object to display 10,000 records beginning at

record 5001
AL_SetSubSelect (eList;5001;10000)
AL_SetSubSelect 103

Field and Record Commands
AL_SetSubSelect 104

Enterability Commands
Enterability Commands

Initiating Data Entry

The method for initiating entry to a cell, and for selecting rows, is
set with the EntryMode parameter of AL_SetEntryOpts
(page 119). Initiating entry can be done in any one of eight differ-
ent ways, each of which also determines the method for
selecting rows. See “AL_SetEntryOpts ” on page 119 for com-
plete information.

Entering Data

The capability to edit data during typed data entry is initiated
automatically, and no programming is necessary to invoke these
functions.

When data entry is initiated on an AreaList Pro cell, the array
contents for the element corresponding to that cell are copied to
the zero element of the same array. Since this element is usually
never used, it makes a convenient storage place for the data in
case you wish to revert to the old value; however, you should
take care not to use this zero array element elsewhere in your
code while data entry is in progress.

Note: When fields are displayed you are responsible for saving
the contents of the field.

Two commands, AL_SetCellHigh (page 125) and
AL_GetCellHigh (page 126), can be used to set the highlighted
range of characters in the data entry cell, or get the range of
characters highlighted by the user, respectively.
AL_SetCellHigh can also be used to set the insertion point
between two characters. After the user ends data entry on a par-
ticular array element, AL_GetCellMod (page 125) can be used
to determine if the data has been altered. AL_GetCellMod and
AL_GetCellHigh can only be used within an entry finished call-
back procedure. See “Using Callback Procedures During Data
Entry” on page 108.

Other programmable data entry specifications include the use of
the Return key for movement during data entry, or insertion of a
Carriage Return character into the text data being entered. This
is controlled using the AllowReturn parameter of
AL_SetEntryOpts (page 119) Please read the section “Moving
105

Enterability Commands
the Current Entry Cell” on page 107 for more information.

You can also specify that seconds be displayed (hh:mm:ss)
when the user is entering time data through the use of the Dis-
playSeconds parameter of AL_SetEntryOpts (page 119).

For boolean data type arrays, two data entry methods can be
specified: a checkbox or radio buttons. AL_SetEntryCtls
(page 121) is used to specify which of these controls is used,
and to which column it applies.

Filters

In order to use data entry filters AL_SetFilter (page 116) must
be used on a per column basis. Standard 4D filter strings can be
used, except that place holders are not supported and will be
ignored. Pre-defined styles may not be used for data entry filters.

Maximum Length of a String Exceeded

As mentioned in “Entering Data” on page 105, when the maxi-
mum string length is exceeded during data entry on a string
array, the system beep will sound for each character typed past
the string length, and the character will be ignored. However,
because of the way in which the 4th Dimension compiler allo-
cates memory for string array elements, this may not always be
true: sometimes an extra character can be entered, and it will be
stored with the array element. If the database is compiled with
Range Checking enabled, this results in the unpleasant side
effect that a range check error will occur when this element’s
value is accessed in 4D code.

A 4D string is stored in memory as a Pascal string, which is a
length byte followed by bytes storing each of the characters. The
compiler will only allocate an even number of bytes. This means
that for a string of length 7, 4D allocates 8 bytes (1 for the length
and 7 for the character data.) However, if the string was declared
to be 8 characters long, 4D would allocate 10 bytes of memory (1
length byte, 8 character bytes, and 1 additional byte to achieve
an even number.) It is this extra byte which causes the problem,
because 4D will allow information to be stored in it, but will later
perform error checking and generate a runtime error.

AreaList Pro cannot determine the declared length of an array
element; it can only detect how long the element actually is.
Thus, there is no way to prevent the user from entering the extra
character. There are two workarounds available for this problem.
106

Enterability Commands
The first is to avoid it by declaring all string arrays to be an odd
number of characters in length. This will prevent the extra byte
from being allocated, and the extra character from being entered.
The second workaround is to compile the database with the
Range Checking option turned off.

Popups

As an alternative to typed data entry, you can specify that a col-
umn use popup menus by using the PopupArray parameter of
AL_SetEnterable (page 114). In this parameter, an array is
passed to AreaList Pro, with which AreaList Pro will build a
popup menu.

No array need be passed to AreaList Pro for a time or date col-
umn which uses a popup menu — AreaList Pro provides
specialized menus for these data types. The presence of a
popup menu in a cell does not prohibit the user from entering
typed data; the Enterable parameter of AL_SetEnterable
(page 114) allows you to control whether either one or both of
these data entry methods are allowed.

Note: The popup menu array must be of the same data type as
the data in the column. It is important that the array used for a
popup not be disposed of until it is no longer needed.

Note: AL_SetEnterable (page 114) must be called when any
changes are made to a PopupArray.

Moving the Current Entry Cell

The action of the Carriage Return key is determined by the pro-
grammer using the AllowReturn parameter of AL_SetEntryOpts
(page 119), depending upon the data entry requirements of the
database.

The user’s ability to control movement while in data entry can
also be established with the use of the MoveWithArrows and
MapEnterKey parameters of this command. The MoveWithAr-
rows parameter will allow the user to move from cell to cell while
in data entry using the four Arrow keys. MapEnterKey enables
you to cause the Enter key to act the same way as either the Tab
key or the Return key. When using this parameter, it should be
noted that the Enter key is often used in 4th Dimension for other
functions which may conflict with its AreaList Pro meaning.

A variety of AreaList Pro commands enable you to monitor and
107

Enterability Commands
control movement during data entry. The current and previous
data entry cells can be determined by using AL_GetCurrCell
(page 124) and AL_GetPrevCell (page 124), respectively.
Movement from cell to cell, while staying in data entry mode, can
be accomplished using AL_GotoCell (page 126). AL_SkipCell
(page 127) can be used in the entry started callback procedure
to cause data entry on a particular cell to be skipped. Data entry
can be terminated via AL_ExitCell (page 128).

Using Callback Procedures During Data Entry

A “callback” is a global 4D procedure which is executed by an
external. AreaList Pro lets you make use of callbacks when
entering and exiting a cell, and when a popup menu is clicked or
released. This feature provides you with considerable control
over user actions, allowing you to do such things as reject an
entry, provide a choice list, or simply skip a particular cell.

Your callback procedures may use any 4D commands, but can
only use the AreaList Pro commands shown in Tables 1 and 2
below.

Note: AL_UpdateArrays (page 46) can only be called with
UpdateMethod equal to -1 and AL_UpdateFields (page 101)
can only be called with UpdateMethod equal to 0 or 1 from a call-
back procedure.

Table 3: Enterability Commands Allowed from a Callback

AL_ExitCell AL_GetCellMod AL_GetCurrCell

AL_GetPrevCell AL_GotoCell AL_SetCallbacks

AL_SetEnterable AL_SetEntryOpts AL_SetFilter

AL_SetEntryCtls AL_SetCellHigh AL_GetCellHigh

AL_SkipCell

Table 4: Other AreaList Pro Commands Allowed from a Callback

AL_GetColLock AL_GetScroll AL_GetSort

AL_GetWidths AL_SetBackClr AL_SetForeClr

AL_SetFormat AL_SetHdrStyle AL_SetHeaders

AL_SetRowColor AL_SetRowStyle AL_SetStyle

AL_SetFooters AL_SetFtrStyle AL_UpdateArrays

AL_UpdateFields
108

Enterability Commands
In addition to altering the array content, you can change color
and style, reject or accept entered data, and change the current
data entry cell using the AreaList Pro commands listed above.
You should not call any command which changes the number of
displayed arrays, their position in the area, or their sorted order.

Executing a Callback Upon Entering a Cell

An “entry started” callback procedure is a 4th Dimension proce-
dure called when data entry begins for a cell or an AreaList Pro
popup menu is clicked, and is specified by passing the procedure
name in the EntryStartedProc parameter of AL_SetCallbacks
(page 117). If this parameter is a null string then no procedure
will be called.

AreaList Pro will pass the entry started callback procedure two
parameters if arrays are being displayed, or three parameters if
fields are displayed. The first parameter is a long integer that cor-
responds to the name of the AreaList Pro object on the layout.
The second parameter is a long integer that reports what action
caused data entry to begin in the cell. The third parameter is a
long integer that reports whether the record was loaded or not
(when fields are being displayed).

You must use the declaration

C_LONGINT($1;$2;$3)

in your callback procedure. Since the first parameter, the long
integer $1, contains 4D’s representation of the AreaList Pro
object, it can be used as the first parameter of any AreaList Pro
procedure called. As stated above, the second parameter
passed to the callback routine, the long integer $2, contains the
method by which data entry began, according to the following
table:

Value EntryMethod

1 Click in Cell

2 Tab

3 Shift-Tab

4 Return

5 Shift-Return

6 AL_GotoCell

7 not used
109

Enterability Commands
The entry started callback is also executed whenever a popup
menu is clicked, but before the menu is actually displayed. When
this occurs, the EntryMethod provided by AreaList Pro will be 10
if the popup was clicked on a cell other than the one actively in
data entry. Method 11 will be reported if data entry was already
established in the cell for which the popup was clicked. One of
the primary uses of the entry started callback when the popup is
clicked would be to load the array from which the popup is built,
then use AL_SetEnterable (page 114) to pass the array to
AreaList Pro.

If the third parameter is 1, then the record was loaded properly
and the field contents can be edited. If the third parameter is 0,
then the record is locked by another process or user. If typed
data entry is underway and the record can not be loaded, then
AL_GotoCell (page 126) or AL_SkipCell (page 127) may be
used to continue data entry in another cell. If neither of these
commands is called then data entry will end. If popup data entry
is underway and the record can not be loaded then data entry
will end.

Executing a Callback Upon Leaving a Cell

An “entry finished” callback procedure is a 4th Dimension proce-
dure called when data entry ends for a cell, or when an AreaList
Pro popup menu is released for a cell not in typed data entry. The
entry finished callback procedure is specified by passing the pro-
cedure name in the EntryFinishedProc parameter of
AL_SetCallbacks (page 117). If this parameter is a null string
then no procedure will be called.

The entry finished callback procedure is passed two parameters
by AreaList Pro. The first parameter is a long integer that corre-
sponds to the name of the AreaList Pro object on the layout. The
second parameter is a long integer that reports what action
caused data entry to end in the cell.

8 not used

9 AL_SkipCell

10 Click on cell popup when
cursor not already in cell

11 Click on cell popup when
cursor already in cell

Value EntryMethod
110

Enterability Commands
You must use the following declaration in your callback
procedure.
C_LONGINT($1;$2)

Since the first parameter, the long integer $1, contains 4D’s rep-
resentation of the AreaList Pro object, it can be used as the first
parameter of any AreaList Pro procedure called. As stated
above, the second parameter passed to the callback routine, the
long integer $2, contains the method by which data entry ended,
according to the following table:

The entry finished callback procedure is actually a function. It
must return True for the value entered into the cell to be
accepted, and False for the value to be rejected. If the value is
rejected the user will not be allowed to leave the cell. See the 4th
Dimension Language Reference for more details about functions
and procedures.

The entry finished callback function is also called when a popup
menu is released. In this case, the ExitMethod reported by
AreaList Pro to the callback will be 10 if typed data entry was in
progress in the cell which contains the popup, or 11 if typed data
entry was not in progress in that cell. AL_GotoCell (page 126)
can be used to establish typed data entry on the cell if it did not
exist before the popup was clicked.

Value ExitMethod

1 Click outside cell on
object

2 Tab

3 Shift-Tab

4 Return

5 Shift-Return

6 AL_GotoCell

7 AL_ExitCell

8 Deselect the cell

9 not used

10 Cell popup released
when cursor not
already in cell

11 Cell popup released
when cursor already in
cell
111

Enterability Commands
Note: If typed data entry is already established for the cell in
which the popup exists, the entry finished callback function will
not run when the popup menu is released.

When displaying arrays and data entry is initiated in a cell, the
contents of the array element will be copied into the zero element
of the array being displayed in the column. Please read the sec-
tion “Initiating Data Entry” on page 105 for more information.

When fields are displayed, the contents of the field are not cop-
ied. Thus it is up to you to save the field contents in the entry
started callback procedure if they will be needed for comparison
in the entry finished callback procedure.

When displaying arrays and the entry finished callback proce-
dure is executed, the array element corresponding to the cell has
already been updated with the new value that was entered by the
user. Thus, the zero element which contains the old data and the
element representing the current cell can both be used to deter-
mine data validity.

Among the possible situations and responses that may occur are
the following:

◆ The data is valid. Set $0:=True to complete data entry for the
cell.

◆ The data is invalid. Copy the old data from the zero element
to the array element corresponding to the cell. Set $0:=True
to complete data entry for the cell.

For example:
aFname{vRow}:=aFname{0} `Reset the cell contents to their original state
$0:=True

◆ The data is invalid. Inform the user that the data is invalid. Set
$0:=False to force the user to remain in the cell and enter
another value.

◆ The data is invalid. Inform the user that the data is invalid.
Modify the cell contents, call AL_GotoCell (page 126) to go
to the current cell, and set $0:=True . This achieves the same
effect as rejecting the entry, but allows the cell contents to be
modified.

For example:
Fname{vRow}:=aFname{0} `Reset the cell contents to their original state
AL_GotoCell (eList;vColumn;vRow) `go to the same cell
$0:=True
112

Enterability Commands
Notifying the User of Invalid Data Entry from the
Exit Callback

You can flag invalid data by returning False from the exit callback
procedure after data entry on a cell. AreaList Pro, in turn, will tell
4D to remain in the external area. However, due to a bug in 4D
v3, the second attempt to refuse the data entered in the cell is
ignored by 4D, and the external area is deselected.

To workaround this 4D bug, add code to the exit callback proce-
dure to open a window (Any window will work, including an Alert ,
Confirm , Request , etc.).
OPEN WINDOW(1;1;2;2;1)
CLOSE WINDOW

This code, when added to the callback procedure will avoid the
problem, and will have an almost unnoticeable effect on the dis-
play of the layout.

Redrawing the Display from the Callback Procedure

You may want to display a variable which has been updated in
one of the available callback procedures on the same layout as
the AreaList Pro object. The variable’s value will be successfully
updated in the callback procedure, but it will not be displayed on
the layout immediately. This is because 4D will not refresh the
screen when a displayed value changes while an external is con-
trolling execution.

In 4D version 3, a mechanism has been provided to allow you to
force such a screen update. If the command CALL PROCESS is
used with the process id parameter = -1, 4D will refresh all win-
dows displaying an interprocess variable. This method requires
that if a variable is updated from the callback procedure, then
that variable must be an interprocess variable. In addition, the
CALL PROCESS command should be executed from the call-
back procedure.

Example:
C_LONGINT($1;$2;$AL_Object;$Action;$i)
C_REAL ($Total)
$AL_Object:=$1
$Action:=$2
$Total:=0
For ($i;1;Size of array (aAmounts))

$Total:=$Total+aAmounts{$i}
End for
◊Total:=$Total
CALL PROCESS (-1)
113

Enterability Commands
$0:=True

Unfortunately, this effect cannot be achieved in earlier versions
of 4D. Any variables displayed on the layout which are updated in
a callback must wait for some other event to cause a screen
refresh.

Exiting Data Entry

Entry mode can be terminated procedurally by using
AL_ExitCell (page 128).

Commands

AL_SetEnterable

AL_SetEnterable (AreaName;ColumnNum;Enterable;PopupArray; MenuSetReference)

AL_SetEnterable is used to set the enterability of a column.

Enterable — Integer. This parameter specifies the methods of
enterability for ColumnNum.

ColumnNum — Integer. This parameter specifies what column to
act on. If ColumnNum is 0, then all columns will be affected.

PopupArray — Array, integer, longint, real, string or text. This
array will be displayed in the popup menu and must be the same
type as the array or field displayed in ColumnNum. If it is not the
same type or if it has no elements, then a menu containing a sin-
gle disabled menu item with the text “No items in this menu” will
be displayed.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column to apply enterability
Enterable integer enterability mode
PopupArray array 4D array to display in popup menu
MenuSetReference longint Reference to a MenuSet™ menu

0 Not enterable
1 Enterable using typed characters only

(default)
2 Enterable using popup menu only
3 Enterable using both typed characters

and popup menu
AL_SetEnterable 114

Enterability Commands
An array is not needed to display a time or date popup menu;
built-in menus are provided. Columns containing boolean or pic-
ture arrays can not contain popup menus.

Note: Do not dispose of the array in 4D until the popup is no
longer needed.

MenuSetReference — Longint. This parameter passes the refer-
ence obtained from the MenuSet™ command
MS_ShareIPMenu . This parameter is used to install a MenuSet
menu in the column represented by ColumnNum.

A MenuSet menu may be installed in a column containing an
array or field of one of the following types: integer, longint, real,
string or text.

If this parameter is passed, then the MenuSet menu will be used.
If this parameter is not passed, then the values in PopupArray
will be displayed in an AreaList Pro popup.

Note: When the user selects an item from the MenuSet menu,
the entry finished callback procedure is run. In this callback the
appropriate MenuSet commands must then be called to deter-
mine the user’s selection. Then the user’s selection must be
placed in the array element corresponding to the cell entered.

If this command is called in the During phase, use
AL_UpdateArrays (page 46) or AL_UpdateFields (page 101)
to redraw the AreaList Pro object as needed. See “Using Call-
back Procedures During Data Entry” on page 108 for a
discussion of using callback procedures with popup menus.

If this command is not called, then all columns will be enterable
using typed characters only.

Examples:
AL_SetEnterable (eArea;4;1) `set column 4 to be enterable using typed char-

acters only
AL_SetEnterable (eArea;0;0) `set all columns to be not enterable
AL_SetEnterable (eArea;3;2;aProducts) `set the third column to be enterable

via a popup menu containing the items in the array aProducts

ARRAY STRING (40;aTeam1;10)
ARRAY STRING (40;aTeam2;10)
ARRAY STRING (10;aTimes;10)
ARRAY STRING (10;aFields;10)
C_LONGINT(ipTeams;msMenu)

`make MenuSet I/P menu
AL_SetEnterable 115

Enterability Commands
ipTeams:=MS_MakeIPMenu ("15000";"FWASA Teams")
$SubID:=MS_SetSubMenu (ipTeams;0;1;15001)
$SubID:=MS_SetSubMenu (ipTeams;0;2;15002)
$SubID:=MS_SetSubMenu (ipTeams;0;3;15003)
$SubID:=MS_SetSubMenu (ipTeams;0;4;15004)

msMenu:=MS_ShareIPMenu (ipTeams) ` get the MenuSet reference

ARRAY STRING (2;aDummy;0)
AL_SetEnterable (eArea;3;2;aDummy;msMenu) ̀ use the MenuSet menu in

column 3

AL_SetFilter

AL_SetFilter (AreaName;ColumnNum;EntryFilter)

AL_SetFilter is used to set the entry filter for a column.

ColumnNum — Integer. This parameter specifies the column to
act on. If ColumnNum is 0, then all columns will be affected.

EntryFilter — String. This parameter specifies the filter to use.
Entry filters will function as they do in 4th Dimension, except that
they will not handle placeholders. Predefined styles may not be
used.

Please read the section “Filters” on page 106 for more
information.

Examples:
AL_SetFilter (eList;3;"&9") `column 3, allow numbers
AL_SetFilter (eList;6;"~a") `column 6, allow lower and uppercase, make all

uppercase

CapsFilter:="~"+Char(34)+"A-Z;a-z;0-9; ;.;0;/;*;(;);&;$;\;"+Char(34)
AL_SetFilter (eList;4;CapsFilter) `column 4, allow multiple groups and sev-

eral individual characters

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column to apply entry filter
EntryFilter string filter for input data
AL_SetFilter 116

Enterability Commands
AL_SetCallbacks

AL_SetCallbacks (AreaName;EntryStartedProc;EntryFinishedProc)

AL_SetCallbacks is used to set callback procedures that are
used with data entry. Please read the section “Using Callback
Procedures During Data Entry” on page 108 for more
information.

EntryStartedProc — String. This procedure will be called when-
ever data entry is started in a cell or when a popup menu is
clicked. If this is an empty string then no procedure will be called.

The EntryStartedProc is passed two parameters. The first
parameter is a longint that corresponds to the name of the
AreaList Pro object on the layout. The second parameter is a
longint that reports what action caused data entry to be started
in the cell. For a list of the possible values of the second parame-
ter, see the table below.

EntryFinishedProc — This procedure will be called whenever

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
EntryStartedProc string 4D procedure called when entry in cell started
EntryFinishedProc string 4D procedure called when entry in cell finished

Value Entry Method

1 Click in Cell

2 Tab

3 Shift-Tab

4 Return

5 Shift-Return

6 AL_GotoCell

7 not used

8 not used

9 AL_SkipCell

10 Other cell popup
clicked

11 Active cell popup
clicked
AL_SetCallbacks 117

Enterability Commands
data entry is finished in a cell or when a popup menu is released
in a cell for which typed data entry has not been established.
This procedure must be a function. It must return True for the
value entered into the cell to be accepted and False for the value
to be rejected. If this is the null string then no procedure will be
called.

The EntryFinishedProc is passed two parameters. The first
parameter is a longint that corresponds to the name of the
AreaList Pro object on the layout. The second parameter is a
longint that reports what action caused data entry to be finished
in the cell. For a list of the possible values of the second parame-
ter, see the table below.

When a cell is entered the data will be copied into the zero ele-
ment of the array being displayed in the column. When the
EntryFinishedProc is executed the array element corresponding
to the cell will already be updated with the new value that was
entered.

Among the possible situations and responses that may occur are
the following:

◆ The data is valid. Set $0:=True to complete data entry for the
cell.

◆ The data is invalid. Copy the old data from the zero element
to the array element corresponding to the cell. Set $0:=True

Value Exit Method

1 Click outside cell on
object

2 Tab

3 Shift-Tab

4 Return

5 Shift-Return

6 AL_GotoCell

7 AL_ExitCell

8 Deselect the cell

9 not used

10 Other cell popup
released

11 Active cell popup
released
AL_SetCallbacks 118

Enterability Commands
to complete data entry for the cell.

For example:
aFname{vRow}:=aFname{0} `Reset the cell contents to their original state
$0:=True

◆ The data is invalid. Inform the user that the data is invalid. Set
$0:=False to force the user to remain in the cell and enter
another value.

◆ The data is invalid. Inform the user that the data is invalid.
Modify the cell contents, call AL_GotoCell to go to the cur-
rent cell, and set $0:=True . This achieves the same effect as
rejecting the entry, but allows the cell contents to be modified.

Examples:
aFname{vRow}:=aFname{0} `Reset the cell contents to their original state
AL_GotoCell (eList;vColumn;vRow) `go to the same cell
$0:=True

`don't install an entry started procedure, do install an entry finished proce-
dure

AL_SetCallbacks (eNames;"";"EntryDoneProc")

AL_SetEntryOpts

AL_SetEntryOpts (AreaName;EntryMode;AllowReturn;DisplaySeconds;

MoveWithArrows; MapEnterKey)

AL_SetEntryOpts is used to control several AreaList Pro
options pertaining to data entry. Please read the section “Moving
the Current Entry Cell” on page 107 for more information.

EntryMode — Integer, 0 to 7. This option determines the method
that the user can use to initiate data entry and select rows with
the mouse. The table below describes the possible values. The

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
EntryMode integer method to initiate entry
AllowReturn integer allow entry of carriage returns into text arrays
DisplaySeconds integer display seconds in time arrays during data entry
MoveWithArrows integer move enterable cell using the Arrow keys
MapEnterKey integer map the enter key to function as another key
AL_SetEntryOpts 119

Enterability Commands
default is 1.

AllowReturn — Integer, 1 or 0.

DisplaySeconds — Integer, 1 or 0.

MoveWithArrows — Integer, 1 or 0.

MapEnterKey — Integer.

Note: The Enter key is in many cases used to accept a record or

Value Entry Selection

0 None Single-click

1 None Single and Double-
click

2 Single-click None

3 Double-click Single-click

4 <Cmd> Double-
click

Single and Double-
click

5 <Shift> Double-
click

Single and Double-
click

6 <Option> Double-
click

Single and Double-
click

7 <Control> Double-
click

Single and Double-
click

1 the user can enter a carriage return char-
acter into a text array element,

0 the carriage return character will move
the enterable cell as described in the
“Moving the Current Entry Cell” on
page 107 (default)

1 seconds will be displayed in time array
elements during data entry

0 seconds will not be displayed (default)

1 the Arrow keys will move the enterable cell to
the next cell according to the key pressed

0 the Arrow keys will move the insertion point
within the enterable cell (default)

0 Do not map the Enter key (default)
1 Map the Enter key to act like the Tab key
2 Map the Enter key to act like the Return

key
AL_SetEntryOpts 120

Enterability Commands
perform some other action in 4D. If the Enter key is not acting as
expected, make sure that it is not being used as a key equivalent
somewhere on the layout.

Examples:
`initiate data entry with a double-click, single-click selection,
`don't allow carriage return characters to be entered into text arrays,
`don't display seconds in time arrays during data entry
`map the Enter key to act like the Tab key

AL_SetEntryOpts (eNames;3;0;0;0;1)
`initiate data entry with a single-click, no selection,
`allow carriage return characters to be entered into text arrays,
`display seconds in time arrays during data entry
`use Arrows to navigate between cells

AL_SetEntryOpts (eNames;2;1;1;1;0)

AL_SetEntryCtls

AL_SetEntryCtls (AreaName;ColumnNum;ControlType)

AL_SetEntryCtls is used to specify which type of control will be
used for data entry in a column displaying a boolean array. If the
column contains any other type of array, this command will be
ignored.

ColumnNum — Integer. This parameter specifies the column to
act on.

ControlType — Integer.

If AL_SetEntryCtls is not called, then a checkbox without a title
will be used for boolean data entry.

Examples:
`use a checkbox with with title for data entry in column 2

AL_SetEntryCtls (eNames;2;1)

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column in which control appears
ControlType integer type of control

0 checkbox without title (default)
1 checkbox with title (the title is the True label

specified in AL_SetFormat)
2 radio buttons (True and False labels are

specified in AL_SetFormat)
AL_SetEntryCtls 121

Enterability Commands
AL_SetCellEnter

AL_SetCellEnter (AreaName;Cell1Col;Cell1Row;Cell2Col;Cell2Row;CellArray;Enterabl

e)

AL_SetCellEnter is used to set the enterability of a specific cell,
range of cells, or list of cells.

◆ To specify a single cell. If Cell1Col and Cell1Row are
greater than 0 and Cell2Col or Cell2Row are less than or
equal to 0 then only [Cell1Col, Cell1Row] will be set.

◆ To specify a range of cells. If Cell1Col and Cell1Row are
greater than 0 and Cell2Col and Cell2Row are greater than 0
then the range of cells from [Cell1Col, Cell1Row] to
[Cell2Col, Cell2Row] will be set.

◆ To specify discontiguous cells. If Cell1Col or Cell1Row are
less than or equal to 0 then the cells in CellArray will be set.

CellArray — two-dimensional integer array. The first dimension
must be two. The first array is for the column indices and the sec-
ond array is for the row indices. The second dimension must be
the same as the number of cells that are to be selected. See the
following illustration.

Enterable— Integer, 1, 0 or -1.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
Cell1Col integer first cell column
Cell1Row integer first cell row
Cell2Col integer last cell column
Cell2Row integer last cell row
CellArray array discontiguous cells
Enterable integer enterability

1 the cell is enterable by typing
0 the cell is not enterable by typing

0 1 2

0
1
2

n

Cell 1

Cell 2

Cell n

0
1
2

n

CellArray

Column
Array

Row
Array
AL_SetCellEnter 122

Enterability Commands
The MoveWithData option of AL_SetCellOpts (page 65) con-
trols whether cell enterability stays with a cell whenever sorting,
row dragging, or column dragging occurs.

Examples:
ARRAY INTEGER (aInt;2;0)

`set the cell in the third column, first row, to be enterable
AL_SetCellEnter (eList;3;1;0;0;aInt;1)

`set the cells in the fourth row (ten columns) to be non-enterable
`the row number is the same for all the cells, just the column number
`changes. So specify a range of values.

AL_SetCellEnter (eList;1;4;10;4;aInt;0)

`set the cells in rows 8, 9, and 10, the first two columns, to be non-enterable
AL_SetCellEnter (eList;1;8;2;10;aInt;0)

AL_GetCellEnter

AL_GetCellEnter (AreaName;CellCol;CellRow;Enterable)

AL_GetCellEnter is used to determine if the enterability of the
specified cell has been explicitly set with AL_SetCellEnter . Note
that AL_GetCellEnter will not get the column enterability.

Enterable— Integer, 1, 0 or -1.

-1 remove any cell-specific enterability which
has been set for the cells

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
CellCol integer cell column
CellRow integer cell row
Enterable integer enterability

1 the cell is enterable by typing
0 the cell is not enterable by typ-

ing
-1 the cell’s enterability has not

been previously set
AL_GetCellEnter 123

Enterability Commands
AL_GetCurrCell

AL_GetCurrCell (AreaName;ColumnNum;RowNum)

AL_GetCurrCell will return the currently enterable cell. This
command is only valid from a callback procedure. Please read
the section “Using Callback Procedures During Data Entry” on
page 108 for more information.

ColumnNum — Integer. This parameter returns the current cell’s
column number.

RowNum — Integer. This parameter returns the current cell’s row
number.

AL_GetCurrCell will return 0 in both the ColumnNum and the
RowNum if there is not a cell being entered. Both ColumnNum
and RowNum must be global variables.

Example:
AL_GetCurrCell (eArea;vColumn;vRow) `get the current cell

AL_GetPrevCell

AL_GetPrevCell (AreaName;ColumnNum;RowNum)

AL_GetPrevCell will return the previously enterable cell.

ColumnNum — Integer. This parameter returns the previous
cell’s column number.

RowNum — Integer. This parameter returns the previous cell’s
row number.

AL_GetPrevCell will return 0 in both the ColumnNum and the

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column where entry cell is located
RowNum integer row where entry cell is located

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column where entry cell was located
RowNum integer row where entry cell was located
AL_GetCurrCell 124

Enterability Commands
RowNum if there was not a cell being entered previously. Both
ColumnNum and RowNum must be global variables.

Example:
AL_GetPrevCell (eArea;vColumn;vRow) `get the previous cell

AL_GetCellMod

AL_GetCellMod (AreaName) ➞ CellModified

AL_GetCellMod will report whether or not the contents of the
cell have been modified. Use this command in the EntryFin-
ishedProc callback. Please read the section “Executing a
Callback Upon Leaving a Cell” on page 110 for more information.

CellModified — Integer. This parameter reports whether or not a
cell was modified.

Example:
If(AL_GetCellMod (eList)=1) `was the value modified?

AL_GetCurrCell (eList;vCol;vRow)
If(vCol=5) `5th column is Line Item quantity

aExtended{vRow}:=aQty{vRow}*aPrice{vRow}
AL_UpdateArrays (eList;-1)

End if
End if

AL_SetCellHigh

AL_SetCellHigh (AreaName;StartPosition;EndPosition)

AL_SetCellHigh will highlight a range of characters within a cell,
from StartPosition to EndPosition-1. When StartPosition = End-
Position, then the insertion point will be positioned prior to the

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
CellModified integer was the cell modified?

0 not modified
1 modified

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
StartPosition integer first character of cell text to highlight
EndPosition integer last character of cell text to highlight
AL_GetCellMod 125

Enterability Commands
character indicated in StartPosition, and none of the characters
in the cell will be highlighted.

Example:
`entry finished callback:

 If(Not (vDataValid))
AL_SetCellHigh (eArea;vStart;vEnd) `highlight the cell contents to indicate

error
 End if

AL_GetCellHigh

AL_GetCellHigh (AreaName;StartPosition;EndPosition)

AL_GetCellHigh will obtain the highlighted range of characters
within a cell. This command may be used to provide user feed-
back after performing error checking on entered data, and can
only be used in the entry finished callback procedure. Please
read the section “Executing a Callback Upon Leaving a Cell” on
page 110 for more information.

See “AL_SetCellHigh ” on page 125.

StartPosition — Integer. This parameter indicates the first high-
lighted character.

EndPosition — Integer. This parameter indicates the last high-
lighted character.

AL_GotoCell

AL_GotoCell (AreaName;ColumnNum;RowNum)

AL_GotoCell will place the cursor into the specified cell. If the
cell does not exist or has been set to not enterable by
AL_SetEnterable (page 114), then this command will have no

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
StartPosition integer first character of highlighted cell text
EndPosition integer last character of highlighted cell text

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column to move entry to
RowNum integer row to move entry to
AL_GetCellHigh 126

Enterability Commands
effect.

If you use AL_GotoCell from a script or procedure other than
the entry or exit callback procedure, you must precede it with the
4D command GOTO AREA . This is because AL_GotoCell only
works if the AreaList Pro object is selected.

If AL_GotoCell is called in the Before phase, the AreaList Pro
area must be the first in the entry order for the layout.

ColumnNum — Integer. This parameter specifies the cell’s
column.

RowNum — Integer. This parameter specifies the row’s column.

Example:
`Entry Callback Procedure

AL_GetCurrCell (eItems;vCol;vRow)
If(vCol=3) `unit price

If(gAccess#"Sales") `does user have security access to this field?
If($2=2) `tab

AL_GotoCell (eItems;vCol+1;vRow) `goto the next cell
Else `not Tab

AL_ExitCell (eItems) `end data entry
End if

End if
End if

AL_SkipCell

AL_SkipCell (AreaName)

AL_SkipCell will skip the current data entry cell and proceed to
the next cell. This command can only be called from the entry
started callback procedure. Please read the section “Executing a
Callback Upon Entering a Cell” on page 109 for more
information..

If data entry in a cell is begun via a Tab, Shift-Tab, Return, Shift-
Return, or click, then AL_SkipCell moves data entry to the next
appropriate cell, according to the entry method.

If the cell was entered via a mouse click, the cell will be exited
and data entry will be ended.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
AL_SkipCell 127

Enterability Commands
If the cell was entered because of AL_SkipCell called from the
previous cell, then data entry will similarly be moved to the next
cell.

If the method by which data entry begun is anything else, this
command will be ignored.

Example:
`Entry Callback Procedure

AL_GetCurrCell (eItems;vCol;vRow)
If(vCol=3) `unit price

If(gAccess#"Sales") `does user have security access to this field?
AL_SkipCell (eItems) `goto the next cell or end data entry

End if
End if

AL_ExitCell

AL_ExitCell (AreaName)

AL_ExitCell will exit the currently enterable cell. If there is not a
cell being entered then AL_ExitCell will have no effect.

AL_ExitCell does not need to be used to deselect a cell under-
going data entry if

◆ a menu is selected

◆ another layout object is clicked

◆ the User clicks elsewhere on the AreaList Pro object.

These cases will all terminate data entry normally without the
use of this command, and the cell will receive its normal exit call-
back. AL_ExitCell is required, however, to terminate data entry
from an entry callback procedure.

Example:
`Entry Callback Procedure
`don't allow entry into cell at column 3, row 4

AL_GetCurrCell (eList;vCol;vRow)
If((vCol=3) & (vRow=4))

AL_ExitCell (eList)
End if

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
AL_ExitCell 128

Dragging Commands
Dragging Commands

Background

AreaList Pro v5.1 utilizes the Macintosh Drag Manager, which is
included in System 7.5 and can be installed into earlier versions
of System 7.x. It can not be installed into System 6.0.x.

To install the Macintosh Drag and Drop Extension

1 Drag the extension onto the System Folder.
A confirm dialog will appear asking you if you wish to install it
into the Extensions folder.

2 Click OK.
3 Restart the computer.

When AreaList Pro is used on a Macintosh which does not have
the Macintosh Drag and Drop extension installed, the new drag-
ging capabilities (version 5.1 and later) will not be available.

To enable dragging in the Windows version of AreaList Pro, you
must have the W4D_Drag.DLL file installed. See “Installing the
Windows Version of AreaList Pro” on page 7 for more
information.

You can use AL_DragMgrAvail (page 134) to determine if the
Macintosh Drag and Drop extension is installed.

Up to 100 AreaList Pro and or DropArea objects may be active
and be dragged from or accept drags from other objects.

AreaList Pro versions prior to 5.1

The older method of dragging in AreaList Pro (pre-version 5.1) is
still supported. However, it is not available for a particular object
if the new commands are used.

An AreaList Pro object can use the new method of dragging (the
Macintosh Drag Manager) or the old method, but not both. If
you’ve used one of the commands in this chapter, any of the old
commands are disabled (ignored), until you “turn off” the new
commands. The new commands, documented in this chapter,
are the preferred method for implementing dragging with AreaL-
ist Pro.

Please read the section “Obsolete Dragging Commands” on
129

Dragging Commands
page 177 for more information.

Technical Details of the Dragging Implementation

AreaList Pro works similarly to the Drag Manager (as defined in
Inside Macintosh) by separating the sender and receiver of a
drag. The sender and receiver can be the same area, different
AreaList Pro areas, or different external areas altogether. In the
latter case, the external area must comply with the 4D External
Drag Interface Specification as documented by Foresight Tech-
nology, Inc.

Currently, dragging is only allowed between external areas. The
user cannot drag to or from the Finder or other applications.
Future versions of AreaList Pro will support the drag-and-drop
being implemented in 4D version 6, provided that ACI provides
the necessary external API.

You must configure AreaList Pro to allow dragging out of and into
an AreaList Pro area. Commands provide the control necessary
to allow dragging within an area, between two or more areas,
and to not allow dragging between certain areas.

To allow dragging out of AreaList Pro, you must pass an access
“code” for the type of data that is to be dragged. You must specify
the type of data to allow to be dragged and at least one code to
enable dragging, using AL_SetDrgSrc (page 135). Up to ten
codes can be passed. Allowing many codes provides for more
flexibility in enabling and disabling dragging between various
areas. This will be explained in more depth later.

In order to allow dragging into AreaList Pro, you must pass an
access “code” for the type of data that can be the destination of a
drag. You must specify the type of data that can receive a drag,
and at least one code to enable dragging, using AL_SetDrgDst
(page 136). AreaList Pro supports dragging to rows, columns,
and cells. As with AL_SetDrgSrc , up to ten codes can be
passed for flexibility reasons.

To enable cell dragging, the CellSelection option of
AL_SetCellOpts (page 65) must be set to 1 or 2 (single cell
selection or multiple cell selection is enabled).

To drag a cell out of an AreaList Pro object, set the Source-
DataType parameter of AL_SetDrgSrc (page 135) to 3 (Cell).

To drag data into an AreaList Pro object and drop it as a cell, set
the DestDataType parameter of AL_SetDrgDst (page 136) to 3
130

Dragging Commands
(Cell).

What are access “codes”?

The access codes that are passed in the AL_SetDrgSrc
(page 135) and AL_SetDrgDst (page 136) commands are used
to enable dragging between specific drag partners. These drag
partners can be the same AreaList Pro area, different AreaList
Pro areas, or different external areas.

When a drag takes place, the drag sender’s external code com-
municates its access codes to the drag receiver’s external code.
The drag receiver will compare the access codes of the sender
to its own codes. If any of the codes match, the drag is allowed.
This mechanism allows a number of combinations between sev-
eral drag partners. The following is an example of enabling the
dragging of a row within the same AreaList Pro area.

Example:
`enable drag events to rows within the this area

vSelfStr:=String (eList) ` creates a unique code that only allows dragging
within this area

AL_SetDrgSrc (eList;1;vSelfStr) ` row data type for source
AL_SetDrgDst (eList;1;vSelfStr) ` row data type for destination

This example also shows how you can create a unique identifier
that only enables dragging within the same AreaList Pro area.

NOTE: AreaList Pro will update the arrays and refresh the area if
the drag is within the same area (row-to-row or column-to-
column).

After a drag

When row, column or cell is dragged out of AreaList Pro, the fol-
lowing information is available to you:

◆ Notification that a drag occurred

◆ Which row, column or cell was dragged (index in array)

◆ Where the row, column or cell was dragged to (this area or
another area)

When the drag is completed, the AreaList Pro script is executed.
If a drag occurred, ALProEvt will be set to -5 if a row was
dragged, -7 if a column was dragged, or -8 if a cell was dragged
(see “Determining the User’s Action on an AreaList Pro Object”
on page 145). Then AL_GetDrgSrcRow (page 138) or
AL_GetDrgSrcCol (page 139) may be used to get the row, col-
131

Dragging Commands
umn or cell that was dragged.

To determine which external area was the destination of the
drag, call AL_GetDrgArea (page 139). This command returns
the AreaName (a long integer) and the process id of the destina-
tion area, which may be the same AreaList Pro area, another
AreaList Pro area, or another external area. When dragging to
another object, that object can either reside in the same window
or on another window, which may require use of 4D’s CALL
PROCESS command to take action on the drag — when drag-
ging to other objects, AreaList Pro is only providing a user
interface to the drag, and notifying you, the developer, that the
drag has occurred. You are responsible for manipulating any
arrays or other data structures.

When an AreaList Pro area is the destination of a drag, the fol-
lowing information is available to you:

◆ The type of data that was the recipient of the drag (row, col-
umn or cell).

◆ The row, column or cell that was dragged to.

You must use AL_GetDrgDstTyp (page 140) to determine if the
destination of the drag was a row, column or cell. If the destina-
tion was a row, AL_GetDrgDstRow (page 142) may be used to
determine the destination row. If the destination was a column,
AL_GetDrgDstCol (page 143) may be used to determine the
destination column. If the destination was a cell, then both
AL_GetDrgDstRow and AL_GetDrgDstCol are used to deter-
mine the destination cell. If the destination of the drag is an area
on another window, then you must use 4D’s CALL PROCESS
command to communicate to the other process.

Note: AreaList Pro will update the arrays and refresh the area if
the drag is within the same area (row-to-row or column-to-
column).

Note: Row dragging is disabled when an AreaList Pro object is in
cell selection mode. See “AL_SetCellOpts ” on page 65.

Note: When dragging cells, there will be no automatic updating of
arrays, even if the source and the destination lists are the same.

AreaList Pro on Multi-Page Layouts

You can place an AreaList Pro area on layouts that contain multi-
ple pages. If you’ve configured the area to accept a drag from
another area, you must enable and disable the AreaList Pro area
132

Dragging Commands
using AL_SetDrgDst (page 136), depending on whether the
area is on the current page. If the page containing the AreaList
Pro area is not the current page, call AL_SetDrgDst with empty
strings for the DstCode parameters. When the page becomes
current, call AL_SetDrgDst with the actual DstCode values you
wish to allow.

Please read the section “Changing Layout Pages” on page 38 for
more information.

Note: You should always disable an AreaList Pro area which is
not on the current layout page.

Multiple Row Dragging

To enable multiple row dragging, the following options must all be
set as follows:

◆ The CellSelection option of AL_SetCellOpts (page 65) must
be set to 0 (row selection is enabled).

◆ The MultiLines option of AL_SetRowOpts (page 59) must be
set to 1 (multiple row selection is enabled).

◆ The MultiRowDrag option of AL_SetDrgOpts (page 137)
must be set to 1 to enable multiple row dragging.

To get the rows that were dragged, use AL_GetSelect
(page 150).

Note: When dragging multiple rows, there will be no automatic
updating of arrays, even if the source and the destination lists are
the same.

Drag DataType

This DataType represents the type of the drag for both the
source and the destination. It is used in the commands
AL_SetDrgSrc (page 135), AL_SetDrgDst , (page 136)and
AL_GetDrgDstTyp (page 140). These are the possible values:

DropArea

AreaList Pro includes a DropArea object, which can be used as a

1 Row
2 Column
3 Cell
133

Dragging Commands
destination for dragged rows and columns. See “DropArea” on
page 155.

AL_DragMgrAvail

AL_DragMgrAvail (IsDragMgrPresent)

AL_DragMgrAvail is used to determine if the Drag Manager is
installed, and alert the user or take some other action.

IsDragMgrPresent — Integer, 0 or 1.

This command can be called from any script or procedure,
including StartUp and Debut, even if an AreaList Pro object is not
displayed.

AreaList Pro utilizes the Macintosh Drag Manager, which is
included in System 7.5 and can be installed into earlier versions
of System 7.x. It can not be installed into System 6.0.x. When
AreaList Pro is used on a Macintosh which does not have the
Drag-and-Drop software installed, the dragging capabilities will
not be available. The pre-version 5.1 dragging capabilities will
still be available. Please read the section “Obsolete Dragging
Commands” on page 177 for more information.

Example:
C_LONGINT(vDragMgr)
AL_DragMgrAvail (vDragMgr)
If(vDragMgr=0)

BEEP
ALERT (“The Macintosh Drag Manager is not installed, you will be unable to

drag rows or columns!”)
End if

Parameter Type Description
IsDragMgrPresent integer indicates whether Drag Manager is installed

1 the Drag Manager is present on this machine, and
AreaList Pro drag and drop functionality is available

0 the Drag Manager is not present on this machine,
and AreaList Pro’s version 5.1 drag features cannot
be used
AL_DragMgrAvail 134

Dragging Commands
AL_SetDrgSrc

AL_SetDrgSrc (AreaName; SourceDataType; SrcCode1; SrcCode2; ... ; SrcCode10)

AL_SetDrgSrc is used to enable dragging out of the AreaList
Pro object AreaName, by setting the access codes for the source
of the drag. This command must be called before a drag is initi-
ated (usually in the Before phase). Please read the section
“What are access “codes”?” on page 131 for more information.

SourceDataType — Integer. Possible values are:

SrcCode — String (15 characters). The SrcCode can have any
value, such as “RowDrag”, “ColDrag”, “DragToALP”, etc.; how-
ever, it is meant to match a code passed into a potential drag
partner. The drag partner will be the destination/receiver of the
drag. That destination can be the same AreaList Pro area, a dif-
ferent AreaList Pro area, or another external object.

This code can be any value other than an empty string. Avoid
using the strings “TEXT” or “PICT”.

AreaList Pro performs the following logic during the actual drag.
When the drag takes place, the source codes that were given in
SrcCode1, SrcCode2, etc. will be communicated to the receiver
of the drag. If any of the codes match, the drag is enabled.

See “What are access “codes”?” on page 131.

Example:
`enable dragging a row within this area

vSelfStr:=String (eList) ` creates a unique code that only allows dragging
within this area

AL_SetDrgSrc (eList;1;vSelfStr) ` row data type for source
AL_SetDrgDst (eList;1;vSelfStr) ` row data type for destination

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
SourceDataType integer type of item dragged
SrcCodeN string used to match drag partners

1 Row
2 Column
3 Cell
AL_SetDrgSrc 135

Dragging Commands
AL_SetDrgDst

AL_SetDrgDst (AreaName; DestDataType; DstCode1; DstCode2; ... ; DstCode10)

AL_SetDrgDst is used to enable dragging into the destination
area, by setting the access codes. Please read the section “What
are access “codes”?” on page 131 for more information.

This command must be called before a drag has occurred.

The AreaName parameter must be the destination (receiver)
area of a drag.

DestDataType - Integer, 1 or 2.

For the data type specified by DestDataType (either row, column,
or cell), you must specify at least 1 DstCode to enable receiving
of that type.

DstCode - String (15 characters). The DstCode can be any value
(other than an empty string), such as “RowDrag”, “ColDrag”,
“ALPDrag”, “PartNum”, etc. Avoid using the strings “TEXT” or
“PICT”. Pass an empty string to disable dragging.

The code should be the same as what is passed into a potential
drag partner. The drag partner will be the source/sender of the
drag. The source area can be the same AreaList Pro area, a dif-
ferent AreaList Pro area, or another external object.

AreaList Pro performs the following logic during the actual drag.
When the drag takes place, the destination codes that were
given in DstCode1, DstCode2, etc. are compared to the source
codes communicated by the sender of the drag. If any of the
codes match, the drag is enabled.

See “Technical Details of the Dragging Implementation” on
page 130.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
DestDataType integer data type to be received
DstCodeN string access code(s) to be received

1 Row
2 Column
3 Cell
AL_SetDrgDst 136

Dragging Commands
Note: When AreaList Pro is placed on a page in a multi-page lay-
out, be sure to disable dragging using this command when that
page is not the currently shown page. Please read the section
“AreaList Pro on Multi-Page Layouts” on page 132 for more
information.

Example:
`enable dragging a row within this area

vSelfStr:=String (eList) ` creates a unique code that only allows dragging
within this area

AL_SetDrgDst (eList;1;vSelfStr) ` row type for destination

AL_SetDrgOpts

AL_SetDrgOpts (AreaName;DragRowWithOptKey;ScrollAreaSize;MultiRowDrag)

AL_SetDrgOpts is used to set various options to be used with
dragging. Call this command before a drag.

DragRowWithOptKey — Integer, 1 or 0.

ScrollAreaSize — Integer 0 to 30. This is the number of pixels
outside of the destination area rectangle that will cause scrolling
when the cursor is over it (see the illustrations below). If ScrollAr-
eaSize is 0, then no scrolling will occur. The default is 30.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
DragRowWithOptKey integer drag row using the option key
ScrollAreaSize integer size of area that will activate scrolling
MultiRowDrag integer enable multiple row dragging

1 the user can drag a row by clicking on it
while holding down the option key

0 the user can drag a row by clicking on it
without holding down the option key
(default)

The ScrollAreaSize is calculated from this destination
rea rectangle when receiving a drag into a row

The ScrollAreaSize is calculated from this destinat
area rectangle when receiving a drag into a colum

A value of 30 for ScrollAreaSize would result in a scroll dragging area
enclosed by these rectangles (row on the left, column on the right)
AL_SetDrgOpts 137

Dragging Commands
MultiRowDrag — Integer, 0 or 1.

With multiple row dragging, the arrays or records will not be auto-
matically updated even if the source and destination lists are the
same. See “Multiple Row Dragging” on page 133 for more
information.

Example:
 `drag row without the option key, scroll in 10 pixel area, drag multiple rows
AL_SetDrgOpts (eArea;0;10; 1)

AL_GetDrgSrcRow

AL_GetDrgSrcRow (AreaName;SourceRow)

Use AL_GetDrgSrcRow to determine which row or cell was
dragged after a drag has completed. The AreaName parameter
should be the source (sender) area of a drag. This command is
called from the source area’s script when ALProEvt = -5 (user
dragged row) or ALProEvt=-8 (user dragged cell).

SourceRow — Integer. This parameter returns the row that was
dragged.

Example:
`eSrcALP script

If(During)
C_LONGINT(vRow)
Case of

:(ALProEvt=-5) ` User dragged a row
AL_GetDrgSrcRow (eSrcALP ;vRow)

`now do something useful
End case

End if

1 enable multiple row dragging
0 disable multiple row dragging

(default)

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
SourceRow integer row that was dragged
AL_GetDrgSrcRow 138

Dragging Commands
AL_GetDrgSrcCol

AL_GetDrgSrcCol (AreaName;SourceCol)

Use AL_GetDrgSrcCol to determine which column or cell was
dragged after a drag has completed. The AreaName parameter
should be the source (sender) area of a drag. This command is
called from the source area’s script when ALProEvt = -7 (user
dragged column) or ALProEvt=-8 (user dragged cell).

SourceCol — Integer. This parameter returns the column that
was dragged.

Example:
`eSrcALP script

If(During)
C_LONGINT(vCol)
Case of

:(ALProEvt=-7) ` User dragged a column
AL_GetDrgSrcCol (eSrcALP ;vCol)

`now do something useful
End case
End if

AL_GetDrgArea

AL_GetDrgArea (AreaName; DestArea; DestProcessID)

Use AL_GetDrgArea to determine the destination area of the
last drag. The AreaName parameter should be the source
(sender) area of a drag. This command is called from the source
area’s script when ALProEvt = -5, -7, or -8 — user dragged a
row, column or cell. Please read the section “Determining the
User’s Action on an AreaList Pro Object” on page 145 for more
information.

DestArea — Long Integer. This parameter is the area reference

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
SourceCol integer column that was dragged

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
DestArea longint ID of the area the item was dragged to
DestProcessID integer process ID of the DestArea
AL_GetDrgSrcCol 139

Dragging Commands
of the area that is the destination of the drag.

DestProcessID — Integer. This parameter contains the Process
ID in which the window and destination area reside. Use the 4D
commands CALL PROCESS and Outside call for interprocess
communication.

Note: If the DestProcessID is different from the current process,
you will need to use the 4D CALL PROCESS and Outside call
commands to communicate to the window that contains the des-
tination area.

Example:
`eSrcALP script

C_LONGINT(vDstArea;vDestID;vRow)

Case of
:(ALProEvt=-5) ` User dragged a row

AL_GetDrgSrcRow (eSrcALP ;vRow)
AL_GetDrgArea (eSrcALP;vDstArea;vDstID)
If (vDstID#Current process) ` if dragged to a different process

◊vDstArea:=vDstArea ` store in interprocess variable
CALL PROCESS (vDstID)

End if
End case

AL_GetDrgDstTyp

AL_GetDrgDstTyp (AreaName;DestDataType)

AL_GetDrgDstTyp is used to determine the type of data that
was the destination of the last drag. Specifically, the user may
drag items to either a row, column, or a cell. After the drag has
completed, AL_GetDrgDstTyp indicates whether the destination
of the drag was a row, column, or a cell. The AreaName parame-
ter should be the destination (receiver) area of a drag.

If the destination and source areas are actually the same area or
different areas within the same process (i.e., they reside on the
same layout), this command may be called from the source
area’s script. If the destination and source areas are in different
processes, then you will need to use the 4D CALL PROCESS
and Outside call commands and interprocess variables to com-
municate between the two processes.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
DestDataType integer type of data which was destination of drag
AL_GetDrgDstTyp 140

Dragging Commands
DestDataType — Integer, 1 or 2. Indicates what type of data was
the destination of the last drag. Values are shown below.

Example:
`eSrcALP script

C_LONGINT(vDstArea;vDstID;vDstType;vRow)

Case of
:(ALProEvt=-5) ` User dragged a row

AL_GetDrgSrcRow (eSrcALP ;vRow)
AL_GetDrgArea (eSrcALP ;vDstArea;vDstID)
If (vDstArea=eSrcALP) ` if dragged within the same area

AL_GetDrgDstTyp (eSrcALP;vDstType) ` get the type of data that was
destination of the drag

If(vDstTyp=1) ` if dragged into a row
AL_GetDrgDstRow (eSrcALP;vRow) ` get the row

End if
Else `dragged to a different area

◊vDstArea:=vDstArea
CALL PROCESS (vDstID)

End if
End case

`Destination ALP layout’s layout proc
C_LONGINT(vRow;vDstType)

Case of
:(Outside call) ` Outside call (via CALL PROCESS)

If(◊vDstArea=eDstALP) ` has a drag occurred from another process into
this AreaList Pro object

AL_GetDrgDstTyp (eDstALP;vDstType) ` get the type of data that was
destination of the drag

If(vDstTyp=1) ` if dragged into a row
AL_GetDrgDstRow (eDstALP;vRow) ` get row

End if
End if

End case

1 Row
2 Column
3 Cell
AL_GetDrgDstTyp 141

Dragging Commands
AL_GetDrgDstRow

AL_GetDrgDstRow (AreaName;DestRow)

If the destination of the last drag was a row or a cell (See
“AL_GetDrgDstTyp ” on page 140), use this command to deter-
mine which row or cell was the destination of the last drag. The
AreaName parameter should be the destination (receiver) area
of a drag.

If the destination and source areas are actually the same area or
different areas within the same process (i.e., they reside on the
same layout), this command may be called from the source
area’s script. If the destination and source areas are in different
processes, then you will need to use the 4D CALL PROCESS
and Outside call commands and interprocess variables to com-
municate between the two processes.

DestRow — Integer. This parameter returns the row number of
the destination area which received the drag.

Example:
`eSrcALP script

C_LONGINT(vDstArea;vDstID;vDstType;vRow)

Case of
:(ALProEvt=-5) ` User dragged a row

AL_GetDrgSrcRow (eSrcALP ;vRow)
AL_GetDrgArea (eSrcALP ;vDstArea;vDstID)
If (vDstArea=eSrcALP) ` if dragged within the same area

AL_GetDrgDstTyp (eSrcALP;vDstType) ` get the type of data that was
destination of the drag

If(vDstTyp=1) ` if dragged into a row
AL_GetDrgDstRow (eSrcALP;vRow) ` get the row number

End if
Else `dragged to a different area

◊vDstArea:=vDstArea
CALL PROCESS (vDstID)

End if
End case

`Destination ALP layout’s layout proc
C_LONGINT(vRow;vDstType)

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
DestRow integer row number in area that was dragged to
AL_GetDrgDstRow 142

Dragging Commands
Case of
:(Outside call) ` Outside call (via CALL PROCESS)

If(◊vDstArea=eDstALP) ` has a drag occurred from another process into
this AreaList Pro object

AL_GetDrgDstTyp (eDstALP;vDstType) ` get the type of data that was
destination of the drag

If(vDstTyp=1) ` if dragged into a row
AL_GetDrgDstRow (eDstALP;vRow) ` get the row number

End if
End if

End case

AL_GetDrgDstCol

AL_GetDrgDstCol (AreaName;DestCol)

If the destination of the last drag was a column or a cell (See
“AL_GetDrgDstTyp ” on page 140), use this command to deter-
mine which column or cell was the destination of the last drag.
The AreaName parameter should be the destination (receiver)
area of a drag.

If the destination and source areas are actually the same area or
different areas within the same process (i.e., they reside on the
same layout), this command may be called from the source
area’s script. If the destination and source areas are in different
processes, then you will need to use the 4D CALL PROCESS
and Outside call commands and interprocess variables to com-
municate between the two processes.

DestCol — Integer. This parameter returns the column number of
the destination area which received the drag.

Example:
`eSrcALP script

C_LONGINT(vDstArea;vDstID;vDstType;vCol)

Case of
:(ALProEvt=-7) ` User dragged a column

AL_GetDrgSrcCol (eSrcALP ;vCol)
AL_GetDrgArea (eSrcALP ;vDstArea;vDstID)
If (vDstArea=eSrcALP) ` if dragged within the same area

AL_GetDrgDstTyp (eSrcALP;vDstType) ` get the type of data that was
destination of the drag

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
DestCol integer column number in area that was dragged

to
AL_GetDrgDstCol 143

Dragging Commands
If(vDstTyp=2) ` if dragged into a column
AL_GetDrgDstCol (eSrcALP;vCol) ` get the column number

End if
Else `dragged to a different area

◊vDstArea:=vDstArea
CALL PROCESS (vDstID)

End if
End case

`Destination ALP layout’s layout proc
C_LONGINT(vCol;vDstType)

Case of
:(Outside call) ` Outside call (via CALL PROCESS)

If(◊vDstArea=eDstALP) ` has a drag occurred from another process into
this AreaList Pro object

AL_GetDrgDstTyp (eDstALP;vDstType) ` get the type of data that was
destination of the drag

If(vDstTyp=2) ` if dragged into a column
AL_GetDrgDstCol (eDstALP;vCol) ` get the column number

End if
End if

End case
AL_GetDrgDstCol 144

User Action Commands
User Action Commands

User interaction with an AreaList Pro object is handled in the
During phase. To accomplish this, you will most often use the
various AreaList Pro commands from within an AreaList Pro
object’s script, which will also contain the procedures to respond
to user actions such as single clicks and double clicks.

AreaList Pro’s PostKey

To cause the script to execute in the During phase (in response
to user activity), AreaList Pro has to send a message to 4D to tell
it to execute the script. This is accomplished by posting a key-
board event to the Macintosh Event Queue.

The default keyboard event is Command-\. You can modify this
key with the PostKey parameter of AL_SetMiscOpts (page 66).

Note: Versions of AreaList Pro previous to v6.0 needed an invisi-
ble button on the layout with a command key equivalent to cause
the script to execute. This invisible button is no longer necessary.
The invisible button may still be left in place. It will have no
adverse effect on the operation of AreaList Pro. It will waste pro-
cessing time and be redundant however, so it is recommended
that the invisible button be removed.

Determining the User’s Action on an AreaList Pro
Object

AreaList Pro maintains a global variable ALProEvt which can be
used to determine what type of user action has triggered the
execution of the AreaList Pro object’s script. The possible values
of ALProEvt are:

Table 5: ALProEvt Values

Value User Action

2 Double-Click

1 Single-Click

0 No Action

-1 Sort Button

-2 Edit Menu Select All
145

User Action Commands
Typically, you will use the If…End if or Case of …End case com-
mands to check the value of ALProEvt. For example, if you had
configured an AreaList Pro object to respond to both single and
double-clicks, you might use a procedure like this in the object’s
script:
Case of

:(Before)
`do the setup of the AreaList Pro object here

:(During)
 Case of

:(ALProEvt=2) `double-click
:(ALProEvt=1) `single-click
:(ALProEvt=-1) `sort button
:(ALProEvt=-2) `Edit menu Select All
:(ALProEvt=-3) `Column resized
:(ALProEvt=-4) `Column lock changed
:(ALProEvt=-5) `Line has been dragged from this area
:(ALProEvt=-6) `User has invoked AreaList Pro Sort Editor
:(ALProEvt=-7) `Column has been dragged from this area
:(ALProEvt=-8) `Cell has been dragged from this area
:(ALProEvt=-9) `Object/WIndow has been resized

End case
End case

Usually you will want no processing to be performed in the
AreaList Pro object’s During phase when ALProEvt = 0. Since
this is an external object, more During phases will occur than is
usual for a layout object. Only those in which ALProEvt is non-
zero have meaning for AreaList Pro processing.

If a single click is reported by AreaList Pro (ALProEvt = 1), and
the area is in single line mode, you can determine whether the
event was caused by a mouse click or by a keyboard event (the
Arrow key or type-ahead scrolling). AL_GetColumn (page 150)

-3 Column Resized

-4 Column Lock
Changed

-5 Row Dragged

-6 Sort Editor

-7 Column Dragged

-8 Cell Dragged

-9 Object and Window
Resized

Table 5: ALProEvt Values

Value User Action
146

User Action Commands
will return zero if the event was due to an Arrow key or type-
ahead scrolling.

A user double click will not cause an ALProEvt event if the
AreaList Pro object is configured to be enterable, and the
selected data entry method is via a double click. If some of the
columns are not enterable, a double click on them will result in a
single click ALProEvt event. Please read the section “Initiating
Data Entry” on page 105 for more information.

Selection

You can determine what row or rows are selected using
AL_GetLine (page 153) if in single-line selection mode, and
AL_GetSelect (page 150) if in multiple-line selection mode. If
you are in cell selection mode, you can use AL_GetCellSel
(page 151) to determine the selected cells.

Sort Order

The user can change the sort order using the sort button (the
column headers) or the sort editor. You can determine this sort
order using AL_GetSort (page 149).

Column Widths

The user is able to resize the columns by clicking and dragging
the dividing lines between columns. You can use AL_GetWidths
(page 148) to get the width of each column, in pixels.

Column Information

AL_GetColumn (page 150) is available to determine the column
where a click occured when selecting a row.

AreaList Pro allows one or more columns to be “locked” for hori-
zontal scrolling. If the AllowColumnLock parameter of
AL_SetColOpts (page 62) is set, the user can change the col-
umn locked (see “Column Locking” on page 12). You can
determine the position of the column lock using AL_GetColLock
(page 153).
147

User Action Commands
Commands

AL_GetWidths

AL_GetWidths (AreaName;ColumnNum;NumWidths;Width1; … ; WidthN)

AL_GetWidths is used to get the widths of the columns to allow
any user changes to the column widths to be saved for future
use. Up to fifteen widths can be retrieved at a time. Global vari-
ables must be used for the Width parameters. Use
AL_SetWidths (page 51) to override the automatic column
width sizing and set the widths of a column.

ColumnNum — Integer. This parameter specifies the first column
to get the width of.

NumWidths — Integer. This parameter specifies the number of
widths to get. This value should be equal to the number of vari-
ables passed for the Width parameters.

Width — Integer. These parameters return the pixel widths of the
columns specified by ColumnNum and NumWidths.

Example:
Case of

:(Before)
SEARCH([Prefs];[Prefs]User=Current user)
$Error:=AL_SetArraysNam (eNames;1;4;"a1";"a2";"a3";"a4") `display the

list

AL_SetWidths (eNames;1;4;[Prefs]Col1;[Prefs]Col2;[Prefs]C
ol3;[Prefs]Col4) `get previous widths

:(After)
AL_GetWidths (eNames;1;4;vColumn1;vColumn2;vColumn3;vColumn4)

`get the current widths
[Prefs]Col1:=vColumn1
[Prefs]Col2:=vColumn2
[Prefs]Col3:=vColumn3
[Prefs]Col4:=vColumn4
SAVE RECORD([Prefs]) `save widths in a preferences file for future use

End case

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column at which to get the first width
NumWidths integer number of widths to get (up to 15)
Width integer pixel width of column
AL_GetWidths 148

User Action Commands
AL_GetSort

AL_GetSort (AreaName;Column1; … ;ColumnN)

AL_GetSort is used to return the current sort order.

Column — Integer. These parameters return the column or col-
umns that the user sorted. A Column greater than 0 means that
the column is sorted in ascending order, while a Column less
than 0 means that the column is sorted in descending order. If a
Column is 0 then all subsequent columns should be ignored.

The first Column returned will have its header underlined by
AreaList Pro.

When the user sort is bypassed by setting the UserSort option of
AL_SetSortOpts (page 69) to 2, AL_GetSort is still used to get
the column header that was clicked on.

You can set the sort order using AL_SetSort (page 86).

Examples:
Case of

:(ALProEvt = -1) `user clicked a sort button
AL_GetSort (eNames;vSortCol) `get the sorted column

End case

$Sorted:=AL_ShowSortEd (eNames) `display AreaList Pro Sort Editor
If($Sorted = 1)

AL_GetSort (eNames;vCol1;vCol2;vCol3;vCol4;vCol5) `get the sort order
`do something here

AL_SetScroll (eNames;1;Abs(vCol1)) `scroll to the sorted column
End if

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
Column integer column that sort was performed upon
AL_GetSort 149

User Action Commands
AL_GetColumn

AL_GetColumn (AreaName) ➞ ColumnNum

Use AL_GetColumn to find out what column the user clicked in.

ColumnNum — Integer. This parameter returnes the column that
the user first clicked in (mouse-down). Thus if the user clicks in
column 5 and then drags the mouse and releases it in column 8,
the ColumnNum returned will be 5.

Example:
$Column:=AL_GetColumn (eNames) `get the column clicked on

AL_GetSelect

AL_GetSelect (AreaName;Array) ➞ ResultCode

AL_GetSelect is used to determine which items were selected
by the user when the MultiLine option of AL_SetRowOpts
(page 59) is enabled, and they have selected multiple lines. Each
element of the array contains a line number that the user
selected when the list was displayed. The array must be an inte-
ger array, so be sure to use the ARRAY INTEGER command
prior to calling AL_GetSelect .

ResultCode — Integer. This value is equal to one (1) if enough
memory was available to resize Array. If enough memory was not
available you should react accordingly.

You can use AL_SetSelect (page 87) to highlight lines.

Example:
`Multi-line option is enabled, the list is displayed, and
`the user selects lines 2,4,5,6,10,11,15,17,18,19,25.

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column that the user clicked in

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
Array integer array contains element numbers selected by the

user when the Multi-Line option is enabled
ResultCode integer identifies result condition
AL_GetColumn 150

User Action Commands
`The 4D procedure looks like this:
Case of

:(Before)
$Error:=AL_SetArraysNam (eList;1;3;"aLN";"aFN";"aCompany") `display

the list
AL_SetRowOpts (eList;1;0;0;0;0) `turn on Multi-line option (2nd parame-

ter)
:(During)

If(ALProEvt=1) `user single-clicked
ARRAY INTEGER (aLines;0) `MUST use an integer array!
$Result:=AL_GetSelect (eList;aLines) `get the items selected by user
If($Result=1)

For ($i;1;Size of array (aLines)) `process each array item selected by
user

SEARCH([Company];[Company]Name=aCompany{aLines{$i}})
`do something here

End for
Else `insufficient RAM to get user selection array

ALERT ("Running low on memory, quit and restart!")
End if `$Result=1

End if `ALProEvt=1
End case

AL_GetCellSel

AL_GetCellSel (AreaName; Cell1Col; Cell1Row; Cell2Col; Cell2Row; CellArray) ➞

ResultCode

AL_GetCellSel is used to get the cell selection. Use the CellSe-
lection option of AL_SetCellOpts (page 65) to specify a cell
selection mode prior to using this command. You can procedur-
ally set the selected cells using AL_SetCellSel (page 84).

If only one cell is selected, then [Cell1Col, Cell1Row] will contain
this cell and [Cell2Col, Cell2Row] will both be 0.

If more than one cell is selected and all are contiguous, then
[Cell1Col, Cell1Row] and [Cell2Col, Cell2Row] will contain the
starting and ending points of this range.

If more than one cell is selected but all are not contiguous, then

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
Cell1Col integer first cell column
Cell1Row integer first cell row
Cell2Col integer last cell column
Cell2Row integer last cell row
CellArray array discontiguous cells
ResultCode integer identifies result condition
AL_GetCellSel 151

User Action Commands
[Cell1Col, Cell1Row] and [Cell2Col, Cell2Row] will all be 0 and
CellArray will contain the selected cells.

CellArray — two-dimensional integer array. The first dimension
must be two. The second dimension will be set by AreaList Pro to
be the same as the number of cells that are selected.

ResultCode is equal to 1 if enough memory was available to
resize CellArray. If enough memory was not available you should
react accordingly.

Example:
ARRAY INTEGER (aInt;2;0)
AL_GetCellSel (eList;vCol1;vRow1;vCol2;vRow2;aInt)

AL_GetScroll

AL_GetScroll (AreaName;VertScroll;HorizScroll)

AL_GetScroll returns the current position of the thumb in the
vertical and horizontal scroll bars.

VertScroll — Integer. This parameter represents the element
number visible at the top of the AreaList Pro display.

HorizScroll — Integer. This parameter represents the column
number visible at the left of the AreaList Pro display. Both
VertScroll and HorizScroll must be global variables.

The value returned in HorizScroll represents the actual column
number, including any columns which might be currently locked.
For example, if the two left columns are locked, and the list is

0 1 2

0
1
2

n

Cell 1

Cell 2

Cell n

0
1
2

n

CellArray

Column
Array

Row
Array

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
VertScroll integer vertical position list is scrolled to (element

#)
HorizScroll integer horizontal position list is scrolled to (col-

umn #)
AL_GetScroll 152

User Action Commands
scrolled one column to the left, so that the fourth column is adja-
cent to the 2nd locked column, then the value returned is four.

You can set the scroll position using AL_SetScroll (page 88).

Example:
AL_GetScroll (eNameList;vVert;vHoriz)

AL_GetColLock

AL_GetColLock (AreaName) ➞ Columns

AL_GetColLock returns the number of columns currently
locked.

Columns — Integer. This parameter returns the number of col-
umns currently locked.

You can set the lock position using AL_SetColLock (page 90).

Example:
$LockColumn:=AL_GetColLock (eList)

AL_GetLine

AL_GetLine (AreaName) ➞ SelectedElement

AL_GetLine returns the number of the currently selected line in
the area specified by area name. AL_GetLine should only be
used with an AreaList Pro object in single-line mode. If the object
is in multi-line mode, you should use AL_GetSelect (page 150).

SelectedElement — Integer. This parameter returns the number
of currently selected elements.

You can set the selected line using AL_SetLine (page 87).

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
Columns integer number of columns that are locked

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
SelectedElement integer number of currently selected element
AL_GetColLock 153

User Action Commands
Example:
`Modify button script
`does a MODIFY RECORD on the record corresponding
`to the currently selected line in the AreaList Pro object eList
`uses an ID array (previously loaded from an ID field) to load
`the correct record

$Line:=AL_GetLine (eList)
SEARCH([Company];[Company]ID=aID{$Line})
MODIFY RECORD([Company])
AL_GetLine 154

Utility Commands
Utility Commands

AreaList Pro includes several commands to assist in managing
the operation of an AreaList Pro area.

DropArea

AreaList Pro includes a simple external area which functions as
a “drop area” for rows, columns, or items dragged from other
external objects. Please read the section “Technical Details of
the Dragging Implementation” on page 130 for more information.

The DropArea is essentially an invisible object which you will
place on top of a graphic image (such as a Trash can icon). You
can control what types of objects can be dragged to the Dro-
pArea using two commands. If you are using the old, pre-version
5.1 method of dragging, use AL_SetDropOpts (page 184). With
version 5.1 or later, use AL_SetDropDst (page 156).

DropArea Objects on a MultiPage Layout

If you are using a DropArea on a layout with multiple pages, you
must disable a DropArea which is not on the active layout page.
Using the pre-version 5.1 method of dragging, use
AL_SetDropOpts (page 184) with values of zero (see the
AL_SetSortOpts command on page 69). Using the version 5.1
dragging, use AL_SetDropDst (page 156) with null strings for
the DestCode parameters.

Sort Editor

AreaList Pro includes a Sort Editor dialog to allow the user to
sort a list using more than one column as the sort criteria. The
user can command-click on the headers to display the dialog.
You can use AL_ShowSortEd (page 157) to display this dialog
procedurally.

Commands

%AL_DropArea

%AL_DropArea is the command used to identify the external
area to which an AreaList Pro row or column can be dragged, but
%AL_DropArea 155

Utility Commands
which does not display anything. When a row or column is
dragged over this area, the area will invert.

This command will appear in the external areas popup on the 4D
Object Definition Dialog when an external object is created on a
layout. It is only used in the object definition for an
%AL_DropArea object, and should never be used as a com-
mand in a script or procedure.

AL_SetDropDst

AL_SetDropDst (DropAreaName;DstCode1; ... ;DstCode10)

AL_SetDropDst is used to set the access codes for the destina-
tion of a drag, and should be called before a drag. Please read
the section “What are access “codes”?” on page 131 for more
information.

DstCode - String (15 characters). The DstCode can be any value
(other than an empty string), such as “RowDrag”, “ColDrag”,
“ALPDrag”, “PartNum”, etc. Avoid using the strings “TEXT” or
“PICT”.

The code should be the same as what is passed into a potential
drag partner. The drag partner will be the source/sender of the
drag. The source area can be an AreaList Pro area or another
external object.

The DropArea performs the following logic during the actual
drag. When the drag takes place, the destination codes that
were given in DstCode1, DstCode2, etc. are compared to the
source codes communicated by the sender of the drag. If any of
the codes match, the drag is enabled.

Please read the section “Technical Details of the Dragging Imple-
mentation” on page 130 for more information.

Note: When a DropArea is placed on a page in a multi-page lay-
out, be sure to disable dragging for that area by calling this
command with null string for the DstCode parameters. Please
read the section “DropArea Objects on a MultiPage Layout” on
page 155 for more information.

Parameter Type Description
DropAreaName longint name of DropArea object on layout
DstCode string access code(s) to be received
AL_SetDropDst 156

Utility Commands
Example:
`enable dragging a row to this area

vStr:=String (eDrop) ` creates a unique code that only allows dragging
within this area

AL_SetDropDst (eList;1;vStr) ` row type for destination

AL_ShowSortEd

AL_ShowSortEd (AreaName) ➞ SortDone

AL_ShowSortEd will display the AreaList Pro Sort Editor. The
prompt may be set with the SortEditorPrompt parameter of
AL_SetSortOpts (page 69). The Editor will display the header
values currently specified for the AreaList Pro object. The head-
ers for picture columns will appear, but will be disabled.

Use AL_GetSort (page 149) to determine what columns the
user sorted on.

SortDone — Integer, 1, 0 or -1. This parameter returns what
action the user made after the Sort Editor was displayed.

Example:
$Sorted:=AL_ShowSortEd (eNames) `display AreaList Pro Sort Editor
If($Sorted = 1)

`do something here
End if

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
SortDone integer user clicked the Sort button

1 the user clicked the Sort button and the list was
sorted

0 the user clicked the Cancel button and the list
was not sorted

-1 the Sort Editor is being displayed in another
process in that copy of 4D on that Macintosh. In
this case you can loop until a different value is
returned or continue without sorting.
AL_ShowSortEd 157

Utility Commands
AL_ShowSortEd 158

Changes from v4 to v5
Changes from v4 to v5

This chapter discusses the changes from AreaList Pro v4 to v5.

Array Setup

Setting Columns in AreaList Pro

Arrays are passed to AreaList Pro using AL_SetArrays ,
AL_InsertArrays , AL_SetArraysNam (page 41), or
AL_InsArrayNam (page 43). The commands are very similar,
and function in essentially the same way. The new
AL_SetArraysNam and AL_InsArrayNam commands, which
passes the arrays by name rather than by reference, is preferred,
due to an improved method of accessing the arrays.
AL_SetArrays and AL_InsertArrays are available for compati-
bility purposes with pre-version 5 procedures, and should not be
used when writing new procedures.

For both AL_SetArraysNam and AL_InsArraysNam , the name
of an array is passed. Except for this difference,
AL_SetArraysNam functions the same as AL_SetArrays and
AL_InsArrayNam functions the same as AL_InsertArrays .

These new commands should be used instead of the old com-
mands whenever possible; however, the old commands will still
work fine in most cases. The exceptions to this are as follows:

◆ The new commands must be using when passing real arrays
if the database will ever be used with the Power Macintosh
native version(s) of 4D.

◆ The new commands must be used if the 4D command COPY
ARRAY is used or if SQL externals are used. If the new com-
mands are not used, then whenever the COPY ARRAY com-
mand or an SQL external command is used to modify arrays
being displayed in an AreaList Pro object, those arrays will
have to be removed using AL_RemoveArrays (page 45) and
reset using AL_SetArrays . If the new commands are used
and all arrays are passed to AreaList Pro by name, then only
AL_UpdateArrays (page 46) will need to be issued.

◆ AL_SetArraysNam must be used when passing a real array
if the database will ever be used with the Power Macintosh
native versions of 4D. You must also use this command if the
4D COPY ARRAY command is used with the arrays you are
passing to AreaList Pro, or if any SQL externals are being
159

Changes from v4 to v5
used to load the arrays.

The AL_SetArrays and AL_SetArraysNam commands can be
used together. This is useful for procedures written prior to ver-
sion 5 which use the AL_SetArrays command, and pass real
arrays to AreaList Pro. You can simply add the new
AL_SetArraysNam command, following an existing
AL_SetArrays command, for real arrays only, thus minimizing
the amount of rewrite required for compatibility with the Power-
Mac native versions of 4D.

For example, the following procedure:
$Error:=AL_SetArrays (eList;1;3;aArrayStr;aArrayReal;aArrayInt)

could be rewritten as:
$Error:=AL_SetArrays (eList;1;3;aArrayStr;aArrayReal;aArrayInt)
$Error:=AL_SetArraysNam (eList;2;1;"aArrayReal")

An alternate and preferred rewrite would be as follows:
$Error:=AL_SetArraysNam (eList;1;3;"aArrayStr";"aArrayReal";"aArrayInt")

In either case, a minimum amount of effort is required to use the
new command and achieve compatibility with the PowerMac
native versions of 4D.

The new AL_SetArraysNam command can be used with the
new syntax for AL_UpdateArrays (page 46), which is also dis-
cussed below.

Inserting and Deleting Arrays

A new command for inserting arrays is available. The command,
AL_InsArrayNam (page 43), passes the arrays by name, rather
than reference. AL_InsArrayNam is functionally equivalent to
the AL_InsertArrays command. Just as AL_SetArraysNam is
preferred, so is AL_InsArrayNam . When using Real arrays and
the PowerMac native versions of 4D, the COPY ARRAY com-
mand, or SQL externals, the new AL_InsArrayNam command
must be used.

Modifying Elements Procedurally

AL_UpdateArrays (page 46) is aware of the new method of
passing arrays by name using AL_SetArraysNam (page 41) or
AL_InsArrayNam (page 43), and as a result can directly deter-
mine the size of the arrays. When using the new commands, you
can pass a value of -2 for the NumElements parameter, and
160

Changes from v4 to v5
AreaList Pro will determine the array size for you. This is the pre-
ferred method of using AL_UpdateArrays when a redraw is
required because of modifications made to a displayed array, or
changes made to any attributes.

Note: AL_UpdateArrays can only be passed a parameter of -1
when used from a callback procedure. Please read the section
“Modifying Array Elements Procedurally” on page 27 for more
information.

Responding to User Actions on an AreaList Pro
Object

No change.

Changing Pages

AL_SetDropOpts (page 184) should be used to disable a Dro-
pArea on the current page when moving to a different layout
page.

The AreaList Pro Drop Area

An AreaList Pro DropArea can now be configured to accept
dragged columns, rows, both, or neither, from any object, using
AL_SetDropOpts (page 184).

Configuration

Headers

No change.

Footers

No change.

Column Widths

No change.

Column Locking

No change.
161

Changes from v4 to v5
Rows with Multiple Lines of Text

No change.

Color

Individual array elements, called cells, can be assigned a unique
foreground color and background color. This capability can be
used to set negative numbers in red, provide special formatting
to show the current selected or enterable cell, and design more
attractive and useful lists. These attributes can be set in the
Before phase, the During phase, and either of the AreaList Pro
callback procedures.

You can use AL_SetCellColor (page 81) to set the color config-
uration for an individual cell, a range of cells, or a selection of
discontiguous cells. AL_GetCellColor (page 85) is used to
determine any cell-specific colors for a particular cell.
AL_GetCellColor can only determine a color which has been
set using the 4D palette of 256 colors, not the AreaList Pro
palette.

Use the MoveWithData option of AL_SetCellOpts (page 65) to
keep the cell-specific information with a cell when a row or col-
umn is dragged to a new location or the list is sorted.

The background color for a specific row can now be specified
using AL_SetRowColor (page 77).

Styles

Individual array elements, called cells, can be assigned a unique
font and style. This capability can be used to provide special for-
matting to show the current selected or enterable cell, and
design more attractive and useful lists. These attributes can be
set in the Before phase, the During phase, and either of the
AreaList Pro callback procedures. See “Using Callback Proce-
dures During Data Entry” on page 108.

You can use AL_SetCellStyle (page 79) to set the font and style
configuration for an individual cell, a range of cells, or a selection
of discontiguous cells. AL_GetCellStyle (page 83) is used to
determine any cell-specific formats for a particular cell.

Use the MoveWithData option of AL_SetCellOpts (page 65) to
keep the cell-specific information with a cell when a row or col-
umn is dragged to a new location or the list is sorted.
162

Changes from v4 to v5
The font for a specific row can now be set using
AL_SetRowStyle (page 75).

Sorting

No change.

Scrolling

You can hide either the horizontal or vertical scroll bar, or both,
using AL_SetScroll (page 88). This allows you to construct a
grid of cells, providing a different interface from a standard scroll-
ing list.

When a scroll bar is hidden, the user is still able to scroll using
the arrow keys or by dragging.

Selection

You can configure an AreaList Pro object for no cell selection,
single cell selection only, or multiple cell selection, using
AL_SetCellOpts (page 65). If you select not to allow cell selec-
tion, then the MultiLines option of AL_SetRowOpts (page 59) is
used to determine the type of row selection.

When an AreaList Pro object is in cell selection mode, mouse
clicks are used to highlight cells rather than rows. If multiple cell
selection is enabled, then the user can shift-click and command-
click to select multiple cells. Discontiguous (non-adjoining) selec-
tions are allowed.

AL_SetCellSel (page 84) is used to select cells procedurally,
and can select a single cell, a range of cells, or a list of cells. You
can determine the selected cells using AL_GetCellSel
(page 151).

When an AreaList Pro object is in cell selection mode, it is
always possible that no cells are selected.

When the user scrolls an AreaList Pro object that is in cell selec-
tion mode using the arrow keys or keyboard type-ahead, the list
will scroll, but the cell selection will not change.

Row dragging is disabled when an AreaList Pro object is in cell
selection mode.

The enterability options set with AL_SetEntryOpts (page 119)
163

Changes from v4 to v5
are fully supported when an AreaList Pro object is in cell selec-
tion mode.

If an AreaList Pro object is in multi-cell selection mode, the Edit
menu Select All command is enabled.

Copy to Clipboard

The Edit menu Copy command is disabled when an AreaList Pro
object has been set to allow cell selection using
AL_SetCellOpts (page 65).

Drag and Drop

An AreaList Pro DropArea can now be configured to accept
dragged columns, rows, both, or neither, from any object, using
AL_SetDropOpts (page 184).

Using Picture Arrays

No change.

Saving and Restoring Configuration Information

Any configuration set by AL_SetCellOpts (page 62) will be
saved using AL_SaveData (page 47) and restored using
AL_RestoreData (page 49).

Enterability

AL_SetCellEnter (page 122) is used to set the enterability for a
single cell, a range of cells, or a selection of discontiguous cells.

Precedence for configuration

AreaList Pro lets you specify the configuration for cells, rows, col-
umns, and an entire list. The precedence used for determining
how to configure an attribute is the following:

1 Cell
2 Row
3 Column
4 List

New Return Value for AL_GetColumn Command

ALProEvt will be set to one (1), and an AreaList Pro event will be
164

Changes from v4 to v5
generated, when the user presses the Arrow keys or performs
type-ahead scrolling while in single-line mode. This functions as
it did in AreaList v2.1. However, AL_GetColumn (page 150) will
now return zero (0) if the ALProEvt was due to one of these
activities. In version 2.1, GetAreaColumn returned the last
clicked on column.
165

Changes from v4 to v5
166

What’s New in AreaList Pro v5 and v5.1
What’s New in AreaList Pro v5 and v5.1

What’s New in AreaList Pro v5.0
◆ Fully compatible with the PowerMac native ver-

sions of 4th Dimension.

AreaList Pro v5 is required so that real arrays will work
properly when using the new PowerMac native ver-
sions of 4D.

◆ Cell Selection.

Single cell and multiple cell selection is available, both
procedurally and for the user. Commands let you set
cell selection, as well as get cell selection.

◆ Cell Styles.

Single and multiple cell control to set the font and
style. The font and style of a single cell can also be
retrieved.

◆ Cell Colors.

Single and multiple cell control to set the foreground
and background color. The foreground and back-
ground color of a single cell can also be retrieved.

◆ Specify enterability for individual cells.

AreaList Pro 5.0 allows you to set the enterability for
single and/or multiple cells. You can even find out if a
cell is enterable or non-enterable.

◆ Array Passing.
167

What’s New in AreaList Pro v5 and v5.1
Arrays can now be passed by name as well as by ref-
erence. This ensures compatibility with 4D and other
external packages (specifically SQL) by giving AreaL-
ist Pro direct access to the arrays.

◆ More Row Attributes.

Now includes font and background color.

◆ Either scroll bar can now be hidden independently.

The horizontal scroll bar can now be hidden even if all
of the columns can not fit in the view. The vertical
scroll bar can also hidden. The list can still be scrolled
by dragging in the list or by using the arrow keys.

What’s New in AreaList Pro v5.1
◆ Dragging Now Uses the Macintosh Drag Manager

The Macintosh Drag Manager provides new capabili-
ties and flexibility to the dragging interface provided by
AreaList Pro.

◆ Dragging across processes.

You can setup an AreaList Pro object to allow dragging
of a row or a column to an AreaList Pro object on a dif-
ferent window (which is in a different process).

◆ Dragging To and From CalendarSet Objects

You can setup an AreaList Pro object to allow dragging
of a row or a column to a CalendarSet object, and to
received drags from a CalendarSet object.

◆ Dragging Rows to Columns, and Columns to
Rows.
168

What’s New in AreaList Pro v5 and v5.1
You can setup an AreaList Pro object to allow a row to be dragged to a
column, and a column to be dragged to a row.
169

What’s New in AreaList Pro v5 and v5.1
170

What’s New in AreaList™ Pro v6
What’s New in AreaList™ Pro v6

This chapter discusses the changes from AreaList Pro v5 to v6.

Displaying Fields

AreaList Pro can now display fields directly, which provides
extremely fast performance even in a 4D Server environment.
See “Field and Record Commands” on page 95 for the details.

AreaList Pro uses the new SubselectionToArray command in
4D to get the records for display. This command is available
beginning with 4D v3.5.3. Therefore fields can not be displayed
in an AreaList Pro object when used with an earlier version of
4D.

The user interface when fields are displayed will be essentially
the same as with arrays. The few minor differences when fields
are displayed are as follows:

Scrolling

Vertical scrolling will be slower when displaying fields since
records have to be retrieved from 4D.

TypeAhead

Keyboard typeahead will be disabled when displaying fields.

Copy rows to the clipboard

Copying rows to the clipboard will not be allowed when display-
ing fields. The “Copy” menu item will be disabled when fields are
displayed.

Sorting
◆ Indexed fields will be bold in the Sort Editor.

◆ Fields from related one files will be dimmed in the Sort Editor.

◆ Columns containing fields from a related one file will not be
sorted when their column header is clicked upon.
171

What’s New in AreaList™ Pro v6
Enterability

Columns containing fields from a related one file will not be
enterable either by typing or by using popups.

The way the entry and exit callbacks are used is also somewhat
different for fields than arrays. See “Executing a Callback Upon
Entering a Cell” on page 109 and “Executing a Callback Upon
Leaving a Cell” on page 110 for more information.

Multiple Row Dragging

AreaList Pro now supports dragging more than one row.

The user selects multiple rows by command-clicking or shift-
clicking upon them. If the DragRowWithOptKey option of
AL_SetDrgOpts (page 137) is set to 1, then the user can also
select multiple rows by dragging. Once the row(s) are selected,
the user may click (or option-click) to drag them. An outline of the
row(s) will follow the pointer (cursor) location until the mouse is
released.

To enable multiple row dragging, the following options must all be
set as follows:

◆ The CellSelection option of AL_SetCellOpts (page 65) must
be set to 0 (row selection is enabled).

◆ The MultiLines option of AL_SetRowOpts (page 59) must be
set to 1 (multiple row selection is enabled).

◆ The MultiRowDrag option of AL_SetDrgOpts (page 137)
must be set to 1 to enable multiple row dragging.

NOTE: When dragging multiple rows, there will be no automatic
updating of arrays, even if the source and the destination lists are
the same.

Cell Drag and Drop

The user drags a cell by clicking upon it and dragging it. An out-
line of the cell will follow the pointer (cursor) location until the
mouse is released.

When enabled, the user can drop an item as a row, as a column
or as a cell. If the destination is a cell, an outline will be shown
inside the cell that the cursor is over to indicate where the item
will be dropped.
172

What’s New in AreaList™ Pro v6
PowerMac Native

AreaList™ Pro v5.2 is now PowerMac native. You must use the
Mac4DX version of AreaList Pro, which includes both 68K and
PowerMac native versions.

Support for MenuSet™ Menus

MenuSet interprocess menus may now be used in place of
AreaList Pro popup menus. A new parameter, MenuSetRefer-
ence, has been added to AL_SetEnterable (page 114). This
reference is obtained from the MenuSet command,
MS_ShareIPMenu .

Increased column capacity

The maximum number of columns that can be displayed in an
AreaList Pro object has been increased from 100 to 255.

Note: The maximum number of rows is 32,750. A future version
of AreaList Pro will allow the display of about 8,000,000 rows.

Invisible Button

The “Invisible Button” is no longer necessary.

AreaList Pro’s PostKey

To cause the script to execute in the During phase (in response
to user activity), AreaList Pro has to send a message to 4D to tell
it to execute the script. This is accomplished by posting a key-
board event to the Macintosh Event Queue.

The default keyboard event is Command-\. You can modify this
key with the PostKey parameter of AL_SetMiscOpts (page 66).

Note: Versions of AreaList Pro previous to v6.0 needed an invisi-
ble button on the layout with a command key equivalent to cause
the script to execute. This invisible button is no longer necessary.
The invisible button may still be left in place. It will have no
adverse effect on the operation of AreaList Pro. It will waste pro-
cessing time and be redundant however, so it is recommended
that the invisible button be removed. If AreaList Pro is used with
the Container™, then the invisible button must be removed.
173

What’s New in AreaList™ Pro v6
AreaList Pro will not work properly in the Container™ if the invis-
ible button is present.

Enhance showing/hiding of scroll bars

Two changes have been made to the way that scroll bars are
shown/hidden:

◆ The vertical and horizontal scroll bars may now be shown by
passing -2 in the VertScroll and HorizScroll parameters of
AL_SetScroll (page 88). The vertical and horizontal scroll
bars may now be hidden by passing -3 in the VertScroll and
HorizScroll parameters of AL_SetScroll .

◆ The horizontal scroll bar will now only be automatically
shown/hidden if it has never been shown/hidden manually by
passing -1, -2 or -3 in the HorizScroll parameter of
AL_SetScroll (page 88). In previous versions there was a
conflict between automatic and manual control of the horizon-
tal scroll bar.

The possible values to use to hide or show the scroll bars are
shown in the table below. The default is that both scroll bars are
shown.

Note: AreaList Pro automatically hides the horizontal scroll bar if
AllowColumnResize in AL_SetColOpts (page 62) is set to 0 and
all of the displayed columns fit within the width of the list area.
AreaList Pro automatically shows the horizontal scroll bar if
AllowColumnResize in AL_SetColOpts is set to 1 or all of the
displayed columns do not fit within the width of the list area. If the
horizontal scroll bar is shown or hidden manually by passing -1, -
2 or -3 in the HorizScroll parameter of AL_SetScroll (page 88),
then this behavior will be permanently disabled for the AreaList
Pro object.

The default is that both scroll bars are shown and set to position
1.

Value VertScroll HorizScroll
>0 Vertical scroll position Horizontal scroll position
 0 Hide when changing pages Hide when changing pages
-1 Hide if shown, Show if hidden Hide if shown, Show if hidden
-2 Show Show
-3 Hide Hide
174

What’s New in AreaList™ Pro v6
Maximum Number of Draggable Objects

The maximum number of draggable objects has been increased
from 50 objects to 100 objects

Up to 100 AreaList Pro and or DropArea objects may now be
active and be dragged from or accept drags from other objects.

Two-Dimension Arrays

AL_SetArraysNam (page 41) and AL_InsArraysNam
(page 43) now handle two-dimensional arrays

One dimension of a two-dimensional array may be passed to
these commands in the Array1; … ; ArrayN parameters. For
example: “My2DArray{1}” may be passed as Array1.

Disable highlighting of selected rows

A new parameter, DisableRowHighlight, has been added to
AL_SetRowOpts (page 59).

Wrap fields when copying to the clipboard

A new parameter, FieldWrapper, has been added to
AL_SetCopyOpts (page 68).

FieldWrapper was actually added in AreaList Pro v5.2.1 for Win-
dows. FieldWrapper will be especially useful on Windows
because programs such as Excel or Works expect text to be
pasted in with commas separating, and quotes wrapping the
fields. FieldWrapper is also available on the Macintosh for
compatibility.

Callback Procedures for Entering or Exiting an
AreaList Pro Object

Callback procedures are now provided to let you take action
when an AreaList Pro object is entered or exited. See “Using the
AreaEntered and AreaExited Callback Procedures” on page 28
for a complete discussion of this new capability.
175

What’s New in AreaList™ Pro v6
Using AreaList Pro on a Resizable Window

An AreaList Pro object and its window may be made resizable
using AL_SetWinLimits (page 91). Only one resizable AreaList
Pro object may be placed on a layout. Other objects (4D vari-
ables, AreaList Pro objects, etc.) may be placed to the left or
above this resizable object, but no objects may be placed to the
right or below this object.

The AreaList Pro object is not really resizable. It appears this
way because AreaList Pro draws its scroll bars at the right and
bottom edges of the window instead of the right and bottom
edges of the area when this option is enabled.

Please read the section “Using AreaList Pro on a Resizable Win-
dow” on page 176 for more information.
176

Obsolete Commands
Obsolete Commands

Several commands are obsolete in AreaList Pro version 5, but
are still supported for compatibilty. You should not use these
commands for new projects.

This chapter provides a reference for these commands. Note that
some commands are still used for other purposes, and are
described in other chapters.

Setting Arrays

Beginning with AreaList Pro version 5, a new method of setting
arrays is provided. The old methods, AL_SetArrays (page 179)
and AL_InsertArrays (page 181) are still available for compati-
bility purposes, but should not be used for new projects. Please
read the section “Array Setup” on page 159 for more information.

Obsolete Dragging Commands

AreaList Pro versions prior to v5.1 supported dragging of rows
and columns using a proprietary technology developed for
AreaList Pro. With the wide acceptance of the Macintosh Drag
Manager technology, which has been incorporated into AreaList
Pro, the old commands should not be used in new projects,
unless the Drag Manager will not be available to you. This is
likely a very rare problem, as only System 6 users are unable to
use the Drag Manager.

Please read the section “Dragging Commands” on page 129 for
more information.

Row Dragging

The Drag and Drop functions for row dragging are controlled by
the DragLine parameter of AL_SetRowOpts (page 59). This
parameter is used to set whether row dragging is initiated by a
click or an Option-click, and to set the possible drag destinations.
AL_GetDragLine is used to get the old and new position of the
row, and the AreaList Pro object or %AL_DropArea object which
was the destination of the row. This command should be used in
the script of the source object when ALProEvt = -5. Please read
the section “Determining the User’s Action on an AreaList Pro
Object” on page 145 for more information.
177

Obsolete Commands
The ability of an AreaList Pro object to accept a dragged row is
determined by the AcceptDrag parameter of AL_SetRowOpts
(page 59). If the line is dragged to another position within the
same list, AreaList Pro will automatically rearrange the elements
of all of the arrays. If the line is dragged out of the list to another
AreaList Pro object, or to an %AL_DropArea object, it is up to
you to remove and insert row(s) as necessary.

Column Dragging

The Drag and Drop functions for column dragging are controlled
by the DragColumn parameter of AL_SetColOpts (page 62).
This parameter is used to set the possible drag destinations.
AL_GetDragCol command is used to get the old and new posi-
tion of the column, and the AreaList Pro or %AL_DropArea
object which was the destination of the column. This command
should be used in the script of the source object when ALProEvt
= -7. Please read the section “Determining the User’s Action on
an AreaList Pro Object” on page 145 for more information.

The ability of an AreaList Pro object to accept a dragged column
is determined by the AcceptDrag parameter of the
AL_SetColOpts (page 62). When a column is dropped within
the same AreaList Pro area, the dragged column will be auto-
matically moved to its new position. However, it is up to you to
keep track of these moves. For instance, if column 1 is dragged
to the interior of the list, the column that was column 2 is now col-
umn 1, and must be addressed as such in future AreaList Pro
commands. If the column is dragged outside of the list to another
AreaList Pro area, or to an %AL_DropArea object, it is up to you
to remove and insert column(s) as necessary.

%AL_DropArea

AreaList Pro v4.0 and v5.0 include an external area to which an
AreaList Pro row or column can be dragged. This area has no
display capabilities on the layout; that is, it is invisible. This
enables you to use a picture area to give the %AL_DropArea
the desired appearance, for example, a trash can picture can be
displayed underneath the external object. When a row or column
is dragged over this area, it will invert.

Dropping a row or column over this external area will cause the
same ALProEvt values of -5 and -7, respectively, to be generated
for the source AreaList Pro area. The area need not be config-
ured in any way; these ALProEvt values will be generated
without any setup being necessary. The commands
178

Obsolete Commands
AL_GetDragLine or AL_GetDragCol can then be used to
determined that the destination area was the %AL_DropArea
using the DestAreaName parameter.

DropArea Objects on a MultiPage Layout

If you are using a DropArea on a layout with multiple pages, you
must disable a DropArea which is not on the active layout page.
Using the pre-version 5.1 method of dragging, use
AL_SetDropOpts (page 184) with values of zero. Using the ver-
sion 5.1 dragging, use AL_SetDropDst (page 156) with null
strings for the DestCode parameters.

Commands

AL_SetArrays

AL_SetArrays (AreaName;ColumnNum;NumArrays;Array1; … ;ArrayN) ➞ ErrorCode

AL_SetArrays tells AreaList Pro what arrays to display. Up to fif-
teen arrays can be set at a time. Any 4D array type can be used,
except pointer and two-dimensional arrays. There are three very
important points to note about this command:

◆ This command must be called first, before any of the other
commands, in both the Before and During phases.

◆ The columns must be added in sequential order, unless the
particular column has already been added. In other words, to
set 30 arrays, you must set arrays 1 through 15 prior to set-
ting arrays 16 through 30.

◆ All arrays set with this command must have the same number
of elements as each other and as any other arrays previously
set.

AL_SetArrays may be called in the Before phase to initially set
the arrays to be displayed. Since AreaList Pro can display up to
100 arrays, this command may have to be used more than once.
However, it is not mandatory to set any arrays in the Before
phase; in that case the area on the layout where AreaList Pro is

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column at which to set the first array
NumArrays integer number of arrays to set (up to 15)
Array array 4D array
ErrorCode integer error code
AL_SetArrays 179

Obsolete Commands
defined will be blank.

ErrorCode — Integer. The possible values are:

AL_SetArrays may be called in the During phase to set arrays
to be displayed or to replace arrays that are already displayed.

Examples:
`AreaList Pro eNameList script

Case of
:(Before)

SELECTION TO ARRAY ([Contacts]FN;aFN;[Contacts]LN;aLN;[Con-
tacts]City;aCity;[Contacts]State;aState) `load the arrays

$Error:=AL_SetArrays (eNameList;1;4;aFN;aLN;aCity;aState) ̀ starting at
column 1, set 4 arrays

:(During)
Case of

:(ALProEvt=2) `user double-clicked
:(ALProEvt=1) `user single-clicked
:(ALProEvt=-1) `user sorted

End case

`set up the eList AreaList Pro object with 25 arrays
`two calls must be made since only 15 arrays can be passed each time
`the arrays are already defined

$Error:=AL_SetArrays (eList;1;15;array1;array2;array3;array4;array5;array6;a
rray7;array8;array9;array10;
array11;array12;array13;array14;array15)

$Error:=AL_SetArrays (eList;16;10;array16;array17;array18;array19;array20;
array21;array22;array23;array24;array25)

Value Error Code Action

0 No error n/a

1 Not an array check to make sure all arrays are
correctly typed

2 Wrong type of
array

pointer and two-dimensional
arrays are not allowed

3 Wrong number
of rows

make sure that all arrays have the
same number of elements

4 Maximum num-
ber of arrays
exceeded

100 arrays is the maximum

5 Not enough
memory

Increase 4D’s RAM partition, or
change your approach to use
fewer or smaller arrays
AL_SetArrays 180

Obsolete Commands
AL_InsertArrays

AL_InsertArrays (AreaName;ColumnNum;NumArrays;Array1; … ;ArrayN) ➞ ErrorCode

AL_InsertArrays functions the same as AL_SetArrays , except
that the arrays are inserted before ColumnNum.

All subsequent columns will maintain their settings. In other
words, any header text, column styles, etc. will stay with their
corresponding array.

ErrorCode — Integer. The possible values are:

Example:
$Error:=AL_InsertArrays (eList;4;3;aFN;aLN;aComp) `starting at column 4,

insert 3 arrays

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
ColumnNum integer column at which to insert the first array
NumArrays integer number of arrays to insert (up to 15)
Array array 4D array
ErrorCode integer error code

Value Error Code Action

0 No error n/a

1 Not an array check to make sure all arrays are
correctly typed

2 Wrong type of
array

pointer and two-dimensional
arrays are not allowed

3 Wrong number
of rows

make sure that all arrays have the
same number of elements

4 Maximum num-
ber of arrays
exceeded

100 arrays is the maximum

5 Not enough
memory

Increase 4D’s RAM partition, or
change your approach to use
fewer or smaller arrays
AL_InsertArrays 181

Obsolete Commands
AL_GetDragLine

AL_GetDragLine (AreaName;OldLineNum;NewLineNum;DestAreaName)

Use AL_GetDragLine to perform additional processing after the
user has dragged a line. A line can be dragged within the list, as
well as from one list to another. The source and the destination
lists must both be on the same layout. The ability to accept a
drag from another AreaList Pro object can also be controlled.
See the parameters DragLine and AcceptDrag in
AL_SetRowOpts (page 59).

If the line is dragged to another position within the list, AreaList
Pro will automatically rearrange all of the arrays. If the line is
dragged out of the list to another AreaList Pro object, it is up to
you to remove and insert row(s) as necessary. The line may also
be dragged to an %AL_DropArea object. Please read the sec-
tion “Row Dragging” on page 177 for more information.

OldLineNum — Integer. This parameter is the position of the line
before it was dragged by the user.

NewLineNum ˆ Integer. This parameter is the position of the line
after the user dragged it.

DestAreaName — Long Integer. This parameter is a longint that
represents the destination object.

OldLineNum, NewLineNum, and DestAreaName must all be glo-
bal variables.

Example:
Case of

:(ALProEvt = -5) `user dragged a line
AL_GetDragLine (eNames;vOldLine;vNewLine;vDestList)
If(vDestList=eNames)

`line was dragged within the list
else

`line was dragged to another object
end if

End case

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
OldLineNum integer old position of the line
NewLineNum integer new position of the line
DestAreaName longint name of destination object
AL_GetDragLine 182

Obsolete Commands
AL_GetDragCol

AL_GetDragCol (AreaName;OldColumnNum;NewColumnNum;DestAreaName)

Use AL_GetDragCol to perform additional processing after the
user has dragged a column. A column can be dragged within the
list, as well as from one list to another. The source and the desti-
nation lists must both be on the same layout. The column may
also be dragged to an %AL_DropArea . Please read the section
“Column Dragging” on page 178 for more information.

The ability to accept a drag from another AreaList Pro object can
be controlled. See the AL_SetColOpts command (page 62),
and the “Column Dragging” on page 178.

When a column is dropped within the same AreaList Pro area,
the dragged column will be automatically moved to its new posi-
tion. However, it is up to you to keep track of these moves. For
instance, if column 1 is dragged to the interior of the list, the col-
umn that was column 2 is now column 1, and must be addressed
as such in future AreaList Pro commands. If the column is
dragged outside of the list to another AreaList Pro area, or to an
%AL_DropArea object, it is up to theyou to remove and insert
column(s) as necessary.

OldColumnNum — Integer. This parameter is the position of the
column before it was dragged by the user.

NewColumnNum — Integer. This parameter is the position of the
column after the user dragged it.

DestAreaName — Long Integer. This parameter is a longint that
represents the destination AreaList Pro object.

OldColumnNum , NewColumnNum , and DestAreaName must
all be global variables.

Example:
Case of

:(ALProEvt = -7) `user dragged a column

Parameter Type Description
AreaName longint name of AreaList Pro object on layout
OldColumnNum integer old position of the column
NewColumnNum integer new position of the column
DestAreaName longint name of destination AreaList Pro object

or %AL_DropArea object
AL_GetDragCol 183

Obsolete Commands
AL_GetDragCol (eNames;vOldCol;vNewCol;vDestList)
If(vDestList=eNames)

`column was dragged within the list
else

`column was dragged to another object
end if

End case

AL_SetDropOpts

AL_SetDropOpts (DropAreaName;AcceptRowDrag;AcceptColumnDrag)

AL_SetDropOpts is used to control several options pertaining to
an AreaList Pro DropArea.

AcceptRowDrag — Integer, 1 or 0.

AcceptColumnDrag— Integer, 1 or 0.

If AL_SetDropOpts is not called, then the DropArea object will
be configured to accept both rows and columns dragged from an
AreaList Pro object.

You should pass a value of zero for both AcceptRowDrag and
AcceptColumnDrag when the layout page containing the Dro-
pArea object is not the current layout page. Please read the
section “DropArea Objects on a MultiPage Layout” on page 179
for more information.

Example:
`setup the AreaList Pro DropArea object to accept row drags only

AL_SetDropOpts (eList;1;0)

Parameter Type Description
DropAreaName longint name of DropArea object on layout
AcceptRowDrag integer accept row dragged from an AreaList Pro object
AcceptColumnDrag integer accept column dragged from an AreaList Pro object

1 this DropArea object will accept a row
dragged from an AreaList Pro object

0 this DropArea object will not accept a row
(default)

1 this DropArea object will accept a column
dragged from an AreaList Pro object

0 this DropArea object will not accept a column
(default)
AL_SetDropOpts 184

Examples
Examples

The examples in this section are designed to provide an over-
view of the use of AreaList Pro and the basic commands. The
examples (except for #9) are included on your AreaList Pro disk,
to allow experimentation with the commands and parameters.

You may also wish to examine the non-compiled version of the
AreaList Pro demo, for more examples on the various AreaList
Pro capabilities.

Example 1 — A Simple One-Column List

Create a simple one-column list on a 4D layout, containing the
elements of a 4D List. When the user clicks on an element in the
list, put the value of the selected element into a variable called
vItem.

First we need to create the layout and draw the AreaList Pro
external object. We’ll name the object eList.

Our layout now looks something like this:
185

Examples
The script for the AreaList Pro object is:
Case of

:(Before) `initialize the AreaList Pro object
LIST TO ARRAY ("City, State";aCityState) `copy the list into an array
$errorcode:=AL_SetArraysNam (eList;1;1;"aCityState") `display array in

AreaList Pro object
vItem:=aCityState{1} `reference the line # into array to get value

:(During) `respond to user action
If(ALProEvt =1) `did user single-click on a line?

$Line:=AL_GetLine (eList) `get the line the user selected
vItem:=aCityState{$Line} `get the value in that element of the array

End if `ALProEvt=1
End case

The layout will appear like this in the User or Runtime
environment:

Notice that the column header displays the default value of “A”.
In the next example, we’ll modify the display to have a more
meaningful header.

Example 2 — Displaying Headers on the List

Modify the previous example to display “City, State” as the
header for the list column.

The modified script for the AreaList Pro object is:
Case of

:(Before) `initialize the AreaList Pro object
LIST TO ARRAY ("City, State";aCityState) `copy the list into an array
$errorcode:=AL_SetArraysNam (eList;1;1;"aCityState") `display array in

AreaList Pro object
AL_SetHeaders (eList;1;1;"City, State") `specify the value for the column

1 header
vItem:=aCityState{1} `reference the line # into array to get value

:(During) `respond to user action
If(ALProEvt =1) `did user single-click on a line?

$Line:=AL_GetLine (eList) `get the line the user selected
vItem:=aCityState{$Line} `get the value in that element of the array

End if `ALProEvt=1
186

Examples
End case

The AreaList Pro object now appears in the User or Runtime
environment like this:

Example 3 — Displaying Data from a File

We’ll change the previous example to load the array from a file in
the database rather than a list. Files are commonly used to keep
list items when the number of items is large or may change fre-
quently. Also, we’ll display the City and State in separate
columns. This will require that our file structure keep the City and
State values in two different fields. We can use the same
AreaList Pro object we created in the previous examples, and
just modify the script.

Our new script is:
Case of

:(Before) `initialize the AreaList Pro object
ALL RECORDS ([Cities]) `load all records in the Cities file
SELECTION TO ARRAY ([Cities]City;aCity;[Cities]State;aState) ̀ copy field

values into arrays
$errorcode:=AL_SetArraysNam (eList;1;2;"aCity";"aState") `display

arrays in AreaList Pro object
AL_SetHeaders (eList;1;2;"City";"State") `specify the values for the col-

umn headers
vItem:=aCity{1}+", "+aState{1}

:(During) `respond to user action
If(ALProEvt =1) `did user single-click on a line?

$Line:=AL_GetLine (eList) `get the line the user selected
vItem:=aCity{$Line}+" "+aState{$Line} `get the value in that element of

the array
End if `ALProEvt=1

End case

Our layout now looks like this to the user:
187

Examples
Example 4 — Selecting Multiple Lines

In the previous examples, we’ve used the default single-line
selection mode, which allows only one line to be selected, or
highlighted, at any time. AreaList Pro can be configured to allow
multiple lines to be selected, and commands are available to
highlight lines procedurally, as well as determine what lines have
been selected by the user.

Let’s modify the previous example script to work in multiple-line
mode. We’ll add an additional few commands to the Before
phase part of the script. First, we need to configure the AreaList
Pro object to be in multi-line mode. Second, we’ll initially display
the list with no lines selected.

Since AreaList Pro defaults to no selected lines when in multi-
line mode, we don’t need to use AL_SetSelect (page 87) in the
Before phase. When the user clicks on one or more items, we’ll
display the selected items in the vItem variable, separated by a
dash character. Finally, if the user double-clicks on a line, we
want to close the layout using the CANCEL command.

Here’s the modified script:
Case of

:(Before) `initialize the AreaList Pro object
ALL RECORDS ([Cities]) `load all records in the Cities file
SELECTION TO ARRAY ([Cities]City;aCity;[Cities]State;aState) ̀ copy field

values into arrays
$errorcode:=AL_SetArraysNam (eList;1;2;"aCity";"aState") `display

arrays in AreaList Pro object
AL_SetHeaders (eList;1;2;"City";"State") `specify the values for the col-

umn headers
AL_SetRowOpts (eList;1;1;0;0;0) `Set multiline mode and allow no selec-

tion parameters
vItem:=""

:(During) `respond to user action
Case of

 :(ALProEvt =1) `did user single-click on a line?
188

Examples
 ARRAY INTEGER (aLines;0)
 $OK:=AL_GetSelect (eList;aLines) `get the lines selected by user
 vItem:=""
 For ($i;1;Size of array (aLines)) `look at each line selected by user
 vItem:=vItem+aCity{aLines{$i}}+" "+aState{aLines{$i}}+" - " `plug val-

ues in vItem
 End for

:(ALProEvt =2) `double-click?
CANCEL `cancel the layout

End case `ALProEvt=1
End case

Now our layout looks like this:

Example 5 — Allowing Data Entry

Now that we have a basic AreaList Pro area displayed on our lay-
out, we can implement data entry.

In AreaList Pro, all that needs to be done is to add a line of code
to the Before phase of the object’s script. To initiate data entry
with a double click, we use AL_SetEntryOpts (page 119) with
the EntryMode parameter set to 3 (see “Initiating Data Entry” on
page 105 for more information about the different options avail-
able). As a default, AreaList Pro allows all columns to be
enterable once the method of initiating data entry has been set.

The code in the script is:
Case of

:(Before) `initialize the AreaList Pro object
ALL RECORDS ([Cities]) `load all records in the Cities file
SELECTION TO ARRAY ([Cities]City;aCity;[Cities]State;aState) `copy

field values into arrays
$errorcode:=AL_SetArraysNam (eList;1;2;"aCity";"aState") `display

arrays in AreaList Pro object
AL_SetHeaders (eList;1;2;"City";"State") `specify the values for the col-

umn headers
AL_SetRowOpts (eList;1;1;0;0;0) `Set multiline mode and allow no selec-
189

Examples
tion parameters
AL_SetEntryOpts (eList;3;0;0) `Set double click to enter data entry mode
vItem:=""

:(During) `respond to user action
If(ALProEvt=1) `did user single-click on a line?

ARRAY INTEGER (aLines;0)
$OK:=AL_GetSelect (eList;aLines) `get the lines selected by user
vItem:=""
For ($i;1;Size of array (aLines)) `look at each line selected by user

vItem:=vItem+aCity{aLines{$i}}+" "+aState{aLines{$i}}+" - " `plug val-
ues in vItem

End for
End if `ALProEvt=1

End case

The Layout now looks like this after double clicking on the cell
with “GA” in it:

Example 6 — Restricting Data Entry to a Column

Now that data entry has been established in our example
AreaList Pro area, let’s prohibit entry to one of the columns. This
requires executing the AL_SetEnterable command (page 114)
to override the default enterability for column 1. In this command,
which is also placed in the Before phase, we must specify the
ColumnNumber, which is 1, and the Enterablility, which we’ll set
to 0 (not enterable.)

The modified script is:
Case of

:(Before) `initialize the AreaList Pro object
ALL RECORDS ([Cities]) `load all records in the Cities file
SELECTION TO ARRAY ([Cities]City;aCity;[Cities]State;aState) `copy

field values into arrays
$errorcode:=AL_SetArraysNam (eList;1;2;"aCity";"aState") `display

arrays in AreaList Pro object
AL_SetHeaders (eList;1;2;"City";"State") `specify the values for the col-

umn headers
AL_SetRowOpts (eList;1;1;0;0;0) `Set multiline mode and allow no selec-
190

Examples
tion parameters
AL_SetEntryOpts (eList;3;0;0) `Set double click to enter data entry mode
AL_SetEnterable (eList;1;0) `Set column 1 to be non-enterable
vItem:=""

:(During) `respond to user action
If(ALProEvt=1) `did user single-click on a line?

ARRAY INTEGER (aLines;0)
$OK:=AL_GetSelect (eList;aLines) `get the lines selected by user
vItem:=""
For ($i;1;Size of array (aLines)) `look at each line selected by user

vItem:=vItem+aCity{aLines{$i}}+" "+aState{aLines{$i}}+" - " `plug val-
ues in vItem

End for
End if `ALProEvt=1

End case

This layout looks identical to that in Example 5, except that col-
umn 1 is no longer enterable. Test this by double clicking on
column 1 — the row will be selected, but you won’t begin data
entry. Double clicking on column two will initiate data entry as in
Example 5.

Example 7 — Validating Data Entry

AreaList Pro has the capability to execute a 4th Dimension pro-
cedure when data entry ends on a cell. This is known as a
callback procedure, and can be specified using
AL_SetCallbacks (page 117). In this example, we add a call-
back procedure which checks the value entered in a column 2
cell, and warns the user if it is invalid. To implement this,
AL_SetCallbacks (page 117) is called from the Before phase,
and sets up the callback procedure ExitCallback.

The new script is:
Case of

:(Before) `initialize the AreaList Pro object
ALL RECORDS ([Cities]) `load all records in the Cities file
SELECTION TO ARRAY ([Cities]City;aCity;[Cities]State;aState) `copy

field values into arrays
$errorcode:=AL_SetArraysNam (eList;1;2;"aCity";"aState") `display

arrays in AreaList Pro object
AL_SetHeaders (eList;1;2;"City";"State") `specify the values for the col-

umn headers
AL_SetRowOpts (eList;1;1;0;0;0) `Set multiline mode and allow no selec-

tion parameters
AL_SetEntryOpts (eList;3;0;0) `Set double click to enter data entry mode
AL_SetEnterable (eList;1;0) `Set column 1 to be non-enterable
AL_SetCallbacks (eList;"";"ExitCallback") `Set exit callback to procedure

ExitCallback
vItem:=""

:(During) `respond to user action
191

Examples
If(ALProEvt=1) `did user single-click on a line?
ARRAY INTEGER (aLines;0)
$OK:=AL_GetSelect (eList;aLines) `get the lines selected by user
vItem:=""
For ($i;1;Size of array (aLines)) `look at each line selected by user

vItem:=vItem+aCity{aLines{$i}}+" "+aState{aLines{$i}}+" - " `plug val-
ues in vItem

End for
End if `ALProEvt=1

End case

In the callback procedure, we must find out from AreaList Pro if
the cell was actually modified, and if so, which cell it was.
AL_GetCellMod (page 125) returns a Boolean value indicating
whether the cell was modified, and AL_GetCurrCell (page 124)
returns its column and row position.

Notice that the callback procedure is actually a function. AreaList
Pro expects a return value which will indicate whether or not the
newly entered data is accepted.

The code for the callback procedure ExitCallback is:
C_LONGINT($1;$2) `must be in every callback procedure
C_LONGINT(vColumn;vRow)
C_BOOLEAN ($0)
If(AL_GetCellMod (eList)>0) `Ask AreaList Pro if cell was modified

AL_GetCurrCell (eList;vColumn;vRow) `Find out which cell
`Since we only have one enterable array, we don't need to worry about
`the column. Create a new array of all possible States.

LIST TO ARRAY ("State Abbrev";aPossStates)
If(Find in array(aPossStates;aState{vRow})=-1) `Is modified element not

valid...
$0:=False `Tell AreaList Pro it is invalid. This forces the user to re-enter it.
BEEP `Provide user feedback
ALERT (aState{vRow}+" is not a valid state abbreviation. Please re-enter.")

Else
$0:=True `Tell AreaList Pro entry is valid

End if
Else

$0:=True `Tell AreaList Pro entry is valid
End if

In this layout, if the user were to double click into the “State” col-
umn cell with “MA” in it, enter “MP”, and exit the cell , this Alert
would be displayed:
192

Examples
Example 8 — Prohibiting Data Entry to a Specific Cell

This final example takes advantage of the other possible
AreaList Pro callback which is executed when a cell is entered
for data entry. We'll make use of this callback to prohibit changes
to column 1 data (City) for the state of California (abbreviation
CA). The only change necessary to the AreaList Pro script is to
add the entry callback procedure name, EntryCallback, to the
call to AL_SetCallbacks (page 117).

The script now is:
Case of

:(Before) `initialize the AreaList Pro object
ALL RECORDS ([Cities]) `load all records in the Cities file
SELECTION TO ARRAY ([Cities]City;aCity;[Cities]State;aState) `copy

field values into arrays
$errorcode:=AL_SetArraysNam (eList;1;2;"aCity";"aState") `display

arrays in AreaList Pro object
AL_SetHeaders (eList;1;2;"City";"State") `specify the values for the col-

umn headers
AL_SetRowOpts (eList;1;1;0;0;0) `Set multiline mode and allow no selec-

tion parameters
AL_SetEntryOpts (eList;3;0;0) `Set double click to enter data entry mode
AL_SetCallbacks (eList;"EntryCallback";"ExitCallback") `Set callback

procedures
vItem:=""

:(During) `respond to user action
If(ALProEvt=1) `did user single-click on a line?

ARRAY INTEGER (aLines;0)
$OK:=AL_GetSelect (eList;aLines) `get the lines selected by user
vItem:=""
For ($i;1;Size of array (aLines)) `look at each line selected by user

vItem:=vItem+aCity{aLines{$i}}+" "+aState{aLines{$i}}+" - " `plug val-
ues in vItem

End for
End if `ALProEvt=1

End case
193

Examples
The callback procedure code checks the column number and
row information by making use of AL_GetCurrCell (page 124).
Note that this procedure now makes use of the two parameters
that AreaList Pro passes to it: the AreaList Pro object id, and the
method by which data entry was initiated.

`Global Procedure: Entry Callback
`$1 = Arealist Pro object - passed by AreaList Pro
`$2 = entry cause - passed by AreaList Pro

C_LONGINT($1;$2) `must be in every callback procedure
C_LONGINT(vCurrCol;vCurrRow)
AL_GetCurrCell ($1;vCurrCol;vCurrRow)
If(vCurrCol=1)

If(aState{vCurrRow}="CA")
AL_SkipCell ($1)

End if
End if

The procedure transitions data entry to the next available cell,
depending on the entry cause. To accomplish this, AL_GotoCell
(page 126) is used. If the user attempts to enter a non-enterable
cell by clicking into it, this procedure will use AL_ExitCell
(page 128) to end data entry.

C_LONGINT($1;$2;$AL_Object;$EntryCause)
$AL_Object:=$1
$EntryCause:=$2
$Exit:=False
Case of

:($EntryCause=1) `mouse click
$Exit:=True

:($EntryCause=2) `tab
vCurrCol:=vCurrCol+1

:($EntryCause=3) `shift-tab
vCurrCol:=vCurrCol-1
If(vCurrCol=0) `leaving left-most column?

vCurrCol:=2
vCurrRow:=vCurrRow-1

End if
:($EntryCause=4) `return

vCurrRow:=vCurrRow+1
If(vCurrRow>Size of array (aCity))

vCurrRow:=vCurrRow-1
End if

:($EntryCause=5) `shift-return
vCurrRow:=vCurrRow-1

End case
If($Exit)

AL_ExitCell ($AL_Object) `Leave data entry
Else

AL_GotoCell ($AL_Object;vCurrCol;vCurrRow) `Goto the next enterable
cell

End if
194

Examples
When it is displayed in the Runtime environment, the layout in
this example will look the same as the layout in Example 7. How-
ever, the cities in the first column are now enterable, except for
those which are in California.

Example 9 — Dragging from AreaList Pro to Calendar-
Set

This is an example of dragging a row from an AreaList Pro object
in one process to a CalendarSet v2 object in another process.

This example assumes that the AreaList Pro object has already
been set up for dragging a row using AL_SetDrgSrc
(page 135)and that the CalendarSet v2 object has already been
set up for receiving a drag using CS_SetDrgDst .

First, the script of the AreaList Pro object:
Case of

:(During)
Case of

:(ALProEvt = -5) ` a row was dragged
AL_GetDrgSrcRow (Self»;vSrcRow) ` get the row that was dragged

`get the area and process that was dragged to
AL_GetDrgArea (Self»;vDestArea;vDestProcID)

If(vDestProcID # 1)
`store the destination area and text in interprocess variables

◊destArea := vDestArea
◊destText := aFirstName{vSrcRow}+" "+ aLastName{vSrcRow}

`call the other process to update the destination area
CALL PROCESS (vDestProcID)

End if
End Case

End Case

Next, the layout procedure of the layout containing the Calendar-
Set v2.0 object:
Case of

:(Outside call)
Case of

:(◊destArea = eCalArea)
`add an element to both the date and text arrays

INSERT ELEMENT(aCSDate;1000)
INSERT ELEMENT(aCSText;1000)

`get the date of the day that was dragged to
CS_GetDrgDstDay (eCalArea;vTempDate)
195

Examples
`update the arrays with the date and the text that was set in the other
`process

aCSDate{Size of array (aCSDate)}:= vTempDate
aCSText{Size of array (aCSText)}:= ◊destText

Area_Refresh (eCalArea) ` update the area
End case

End case
196

Troubleshooting
Troubleshooting

This chapter lists several common problems, and their solutions,
encountered when working with AreaList Pro.

When trouble-shooting a problem, use all of the tools at your dis-
posal, including the Debug window. Many problems can be
quickly resolved by stepping thru each line of code, and checking
the values of variables and arrays.

Garbage characters are displayed for numeric
arrays
◆ You must use AL_SetArraysNam (page 41), not

AL_SetArrays (page 179) when displaying real arrays and
running using a PowerMac-native version of 4D. See
“Changes from v4 to v5” on page 159.

AreaList Pro is not being updated properly
◆ Using Arrays — Make sure that you call the array commands,

AL_SetArraysNam (page 41), AL_InsArrayNam (page 43),
AL_RemoveArrays (page 45), or AL_UpdateArrays
(page 46), before any other AreaList Pro command.

◆ Using Fields — Make sure that you call the field commands,
AL_SetFields (page 99), AL_InsertFields (page 100),
AL_RemoveFields (page 101), or AL_UpdateFields
(page 101), before any other AreaList Pro command.

◆ Make sure that you call an array command whenever you
modify any of the arrays.

◆ Make sure that you call an array or field command whenever
any of the commands in the AreaList Pro Configuration group
are called.

◆ If you open a window over an AreaList Pro object and you
need to call an array command, be sure to first call the
CLOSE WINDOW command.

◆ Make sure that you do not have the same arrays displayed in
two active AreaList Pro objects.

◆ Make sure that you do not have two active AreaList Pro
objects with the same name.

AreaList Pro’s scroll bars show up on other pages
◆ See “Changing Layout Pages” on page 38.
197

Troubleshooting
AreaList Pro reports wrong drop object after Drag
and Drop
◆ See “Changing Layout Pages” on page 38.

AreaList Pro does not respond to single or double
clicks
◆ See “Determining the User’s Action on an AreaList Pro

Object” on page 145.

◆ An AreaList Pro object cannot be displayed on an input layout
entered via the DISPLAY SELECTION command.

◆ AreaList Pro will not generate double-click events when data
entry is initiated via a double click. In this case, clicking on
non-enterable columns will only generate single-click events.

AreaList Pro user event code runs more than once
◆ Check to make sure that the code is in the AreaList Pro

object’s script and not in the layout procedure. Also insure
that the code runs only when ALProEvt is not zero (0).

Row dragging doesn’t work.
◆ Check the selection mode — row dragging isn’t enabled

when an AreaList Pro object is in cell selection mode.

◆ When attempting to open a 4D window to display a layout
from a callback procedure, two windows open. This can be
prevented by using a variable as a flag to identify the second
time the callback procedure runs, so you can avoid opening
the window a second time.

A compiler run-time error occurs with a message
that the parameters are undefined.
◆ You must define the $1, $2, and $3 parameters in the entry

started and entry finished callbacks to be long integers: See
“Using Callback Procedures During Data Entry” on page 108
and “Enterability” on page 96.

Example:

C_LONGINT($1;$2$3})

You will only need to define $3 if you are using fields. If you are
using arrays $3 does not need to be defined.

The compiler generates warnings that parameters
198

Troubleshooting
are missing from AreaList Pro commands.
◆ This is expected behavior, caused because the compiler

checks to see the number of parameters defined for an exter-
nal command. Since AreaList Pro has several commands
which allow a variable number of parameters, the compiler
will generate a warning. These warnings can be ignored.

The footers for an AreaList Pro object aren’t being
displayed.
◆ You must correctly set the ShowFooters option of the

AL_SetMiscOpts (page 66) command.

An AreaList Pro popup menu doesn’t display the
correct values after being procedurally updated.
◆ AL_SetEnterable (page 114) should be called when any

changes are made to a PopupArray.

AreaList Pro doesn’t display correctly, or crashes,
when used with a SEARCH BY LAYOUT command.
◆ 4D does not support external areas properly on a search by

layout screen. AreaList Pro will not work in this case.

My columns appear blank when displaying fields in
AreaList Pro?
◆ You must define a global procedure called Compiler_ALP. You

will need to paste in the code provided by the text file,
Compiler_ALP, that comes with AreaList Pro v6.0. After you
have created and saved this procedure quit 4D and restart
your database. See “Temporary Arrays” on page 95.

Other
◆ When debugging database crashes due to an external, check

for external resource conflicts. De-install all externals from
the Structure file, then re-install them, re-installing AreaList
Pro last. If using a Proc.Ext, create a new one and re-install
all externals, installing AreaList Pro last. Always use the
AreaList™ Pro Installer to install AreaList Pro.
199

Troubleshooting
200

AreaList ™ Pro Demo
AreaList ™ Pro Demo

The AreaList Pro Demo database allows the various features of
AreaList Pro to be experimented with. The structure is provided
in both compiled and non-compiled form. Feel free to use any of
the procedures in your own code; there are several useful rou-
tines included.

The compiled version of the AreaList Pro Demo may be freely
distributed. The AreaList Pro floppy disk includes a compressed
version of the compiled AreaList Pro Demo, which contains a
demo version of the AreaList Pro external. Please don’t distribute
the source code to the AreaList Pro Demo, or the non-compiled
AreaList Pro Demo.
201

AreaList ™ Pro Demo
202

Technical Support
Technical Support

Foresight Technology provides support for technical questions
via electronic mail and telephone. Primary support is offered via
electronic mail and our World Wide Web server.

Electronic Mail
Electronic Mail: support@fsti.com

World Wide Web
World Wide Web: http://www.fsti.com/
ftp: ftp.fsti.com

Our World Wide Web server has a wealth of technical information
available to you, including FAQ’s (Frequently Asked Questions),
updates, demos, and other resources.

FAX
(817) 731-9304

Telephone

Telephone support is offered, although we strongly encourage
the use of electronic mail whenever possible, because we’ve
found that taking the time to write down the question or problem
can very often provide the solution before involving technical
support personnel.

(817) 731-4444

Our technical support department is available to help you solve
problems in the operation and use of AreaList Pro. Please be
aware that we cannot design your database, but we are happy to
respond to your technical questions. And always, please refer to
your manuals (especially the Troubleshooting section) as your
first source of information.
203

Technical Support
204

About Foresight Technology
About Foresight Technology

Foresight Technology, Inc. is the leading publisher of 4th Dimen-
sion development tools and utilities. We also provide high-quality,
integrated, and complete systems for businesses, utilizing Mac-
intosh, 4th Dimension, and the “C” programming language.
Incorporated in August of 1988, and a Registered 4D Developer
since March 1988, we have consulted with and developed cus-
tom database applications for a variety of clients, including Apple
Computer, CITGO Petroleum, Linbeck Construction, Taco Bell,
Pizza Hut, Electronic Data Systems, Gifford-Hill Pipe Company,
and many others.

Opportunities

We are always looking for enthusiastic, hard-working individuals
with experience in 4th Dimension, SQL, C, C++, Mac ToolBox,
Visual Basic, or Windows API. Our work environment is relaxed,
yet professional, and performance and results are highly valued.

If you are interested in discussing your qualifications and inter-
ests, please contact us.
205

About Foresight Technology
206

AreaList Pro Command Reference — by Chapter

Software License and Limited Warranty.. v

Table of Contents... vii

Using the AreaList Pro Manual... 1

About AreaList Pro .. 3

Installing and De-Installing AreaList™ Pro ... 5

The AreaList Pro User Interface ... 11

Developing with AreaList Pro ... 21

Configuration Commands... 25
AL_SetArraysNam (AreaName; ColumnNum; NumArrays; Array1; … ; ArrayN) ➞ ErrorCode ...41
AL_InsArrayNam (AreaName; ColumnNum; NumArrays; Array1; … ; ArrayN) ➞ ErrorCode ...43
AL_RemoveArrays (AreaName; ColumnNum; NumArrays)...45
AL_UpdateArrays (AreaName; UpdateMethod) ...46
AL_SaveData (AreaName; SavePict) ➞ ResultCode..47
AL_SetMainCalls (AreaName; AreaEnteredProc; AreaExitedProc) ..48
AL_RestoreData (AreaName; RestorePict) ➞ ResultCode ..49
AL_SetHeaders (AreaName; ColumnNum; NumHeaders; Header1; … ; HeaderN) ..50
AL_SetFooters (AreaName; ColumnNum; NumFooters; Footer1; … ; FooterN)..51
AL_SetWidths (AreaName;ColumnNum;NumWidths;Width1; … ; WidthN) ...51
AL_SetFormat (AreaName;ColumnNum;Format;ColumnJust;HeaderJust;FooterJust; UsePictHeight)...52
AL_SetHdrStyle (AreaName;ColumnNum;FontName;Size;StyleNum) ..56
AL_SetFtrStyle (AreaName;ColumnNum;FontName;Size;StyleNum)..57
AL_SetStyle (AreaName;ColumnNum;FontName;Size;StyleNum) ..58
AL_SetRowOpts (AreaName;MultiLines;AllowNoSelection;DragLine;AcceptDrag; MoveWithData;DisableRowHighlight) ...59
AL_SetColOpts (AreaName;AllowColumnResize;ResizeInDuring;AllowColumnLock; HideLastColumns;DisplayPixelWidth;DragColumn;AcceptDrag)62
AL_SetCellOpts (AreaName; CellSelection; MoveWithData; Optimization) ...65
AL_SetMiscOpts (AreaName;HideHeaders;AreaSelected;PostKey;ShowFooters) ...66
AL_SetCopyOpts (AreaName;IncludeHiddenCols;FieldDelimiter;RecordDelimiter; FieldWrapper)...68
AL_SetSortOpts (AreaName;SortInDuring;UserSort;AllowSortEditor;SortEditorPrompt; ShowSortOrder)..69
AL_SetForeClr (AreaName;ColumnNum;HdrForeColor1;HdrForeColor2;ListForeColor1; ListForeColor2;FtrForeColor1;FtrForeColor2)71
AL_SetBackClr (AreaName;HdrBackColor1;HdrBackColor2;ListBackColor1;ListBackColor2; FtrBackColor1;FtrBackColor2).....................................73
AL_SetDividers (AreaName;ColDividerPattern;ColDividerColor1;ColDividerColor2; RowDividerPattern;RowDividerColor1;RowDividerColor2).........74
AL_SetRowStyle (AreaName;RowNum;StyleNum;FontName) ..75
AL_SetRowColor (AreaName;RowNum;RowForeColor1;RowForeColor2; RowBackColor1; RowBackColor2)..77
AL_SetCellStyle (AreaName; Cell1Col; Cell1Row; Cell2Col; Cell2Row; CellArray; StyleNum; FontName) ..79
AL_SetCellColor (AreaName;Cell1Col;Cell1Row;Cell2Col;Cell2Row;CellArray; ForeColor1; ForeColor2;BackColor1;BackColor2)81
AL_GetCellStyle (AreaName; CellCol; CellRow; StyleNum; FontName) ...83
AL_SetCellSel (AreaName; Cell1Col; Cell1Row; Cell2Col; Cell2Row; CellArray)..84
AL_GetCellColor (AreaName;CellCol;CellRow;ForeColor2;BackColor2) ..85
AL_SetSort (AreaName;Column1; … ;ColumnN) ...86
AL_SetLine (AreaName;LineNum)..87
AL_SetSelect (AreaName;RowsToSelect)..87
AL_SetScroll (AreaName;VertScroll;HorizScroll)..88
AL_SetColLock (AreaName;Columns) ...90
AL_SetHeight (AreaName;NumHeaderLines;HeaderHeightPad;NumRowLines; RowHeightPad;NumFooterLines;FooterHeightPad)90
AL_SetWinLimits (AreaName; EnableResize; MinWidth; MinHeight; MaxWidth; MaxHeight)..91
AL_DoWinResize (AreaName) ..93

Field and Record Commands ... 95
AL_SetFile (AreaName; FileNum) ➞ ErrorCode..98
AL_SetFields (AreaName; FileNum; ColumnNum; NumFields; FieldNum1; … ; FieldNumN) ---> ErrorCode ..99
AL_InsertFields (AreaName; FileNum; ColumnNum; NumFields; FieldNum1; … ; FieldNumN) ➞ ErrorCode ..100
AL_RemoveFields (AreaName; ColumnNum; NumFields)..101
AL_UpdateFields (AreaName; UpdateMethod)...101
AL_SetSubSelect (AreaName; FirstRecord; NumRecords) ..102

Enterability Commands... 105
AL_SetEnterable (AreaName;ColumnNum;Enterable;PopupArray; MenuSetReference)..114
AL_SetFilter (AreaName;ColumnNum;EntryFilter) ...116
AL_SetCallbacks (AreaName;EntryStartedProc;EntryFinishedProc) ...117
© 1990-1995 Foresight Technology, Inc. All Rights Reserved.

AL_SetEntryOpts (AreaName;EntryMode;AllowReturn;DisplaySeconds; MoveWithArrows; MapEnterKey) ..119
AL_SetEntryCtls (AreaName;ColumnNum;ControlType)...121
AL_SetCellEnter (AreaName;Cell1Col;Cell1Row;Cell2Col;Cell2Row;CellArray;Enterable) ..122
AL_GetCellEnter (AreaName;CellCol;CellRow;Enterable)...123
AL_GetCurrCell (AreaName;ColumnNum;RowNum) ...124
AL_GetPrevCell (AreaName;ColumnNum;RowNum)...124
AL_GetCellMod (AreaName) ➞ CellModified ...125
AL_SetCellHigh (AreaName;StartPosition;EndPosition) ..125
AL_GetCellHigh (AreaName;StartPosition;EndPosition)..126
AL_GotoCell (AreaName;ColumnNum;RowNum) ..126
AL_SkipCell (AreaName)..127
AL_ExitCell (AreaName)...128

Dragging Commands... 129
AL_DragMgrAvail (IsDragMgrPresent) ...134
AL_SetDrgSrc (AreaName; SourceDataType; SrcCode1; SrcCode2; ... ; SrcCode10)..135
AL_SetDrgDst (AreaName; DestDataType; DstCode1; DstCode2; ... ; DstCode10)..136
AL_SetDrgOpts (AreaName;DragRowWithOptKey;ScrollAreaSize;MultiRowDrag)...137
AL_GetDrgSrcRow (AreaName;SourceRow) ...138
AL_GetDrgSrcCol (AreaName;SourceCol)...139
AL_GetDrgArea (AreaName; DestArea; DestProcessID) ...139
AL_GetDrgDstTyp (AreaName;DestDataType) ..140
AL_GetDrgDstRow (AreaName;DestRow) ...142
AL_GetDrgDstCol (AreaName;DestCol)...143

User Action Commands .. 145
AL_GetWidths (AreaName;ColumnNum;NumWidths;Width1; … ; WidthN)...148
AL_GetSort (AreaName;Column1; … ;ColumnN)...149
AL_GetColumn (AreaName) ➞ ColumnNum ...150
AL_GetSelect (AreaName;Array) ➞ ResultCode..150
AL_GetCellSel (AreaName; Cell1Col; Cell1Row; Cell2Col; Cell2Row; CellArray) fi ResultCode...151
AL_GetScroll (AreaName;VertScroll;HorizScroll) ...152
AL_GetColLock (AreaName) ➞ Columns ..153
AL_GetLine (AreaName) ➞ SelectedElement ..153

Utility Commands .. 155
AL_SetDropDst (DropAreaName;DstCode1; ... ;DstCode10)...156
AL_ShowSortEd (AreaName) ➞ SortDone ..157

Changes from v4 to v5 .. 159

What’s New in AreaList Pro v5 and v5.1.. 167

What’s New in AreaList™ Pro v6.. 171

Obsolete Commands... 177
AL_SetArrays (AreaName;ColumnNum;NumArrays;Array1; … ;ArrayN) ➞ ErrorCode...179
AL_InsertArrays (AreaName;ColumnNum;NumArrays;Array1; … ;ArrayN) ➞ ErrorCode...181
AL_GetDragLine (AreaName;OldLineNum;NewLineNum;DestAreaName) ...182
AL_GetDragCol (AreaName;OldColumnNum;NewColumnNum;DestAreaName)..183
AL_SetDropOpts (DropAreaName;AcceptRowDrag;AcceptColumnDrag) ...184

Examples .. 185

Troubleshooting... 197

AreaList ™ Pro Demo .. 201

Technical Support.. 203

About Foresight Technology .. 205

AreaList Pro Command Reference — by Chapter .. 207

AreaList Pro Command Reference — Alphabetical.. 209
© 1990-1995 Foresight Technology, Inc. All Rights Reserved.

AreaList Pro Command Reference — Alphabetical

AL_DoWinResize (AreaName) ..93
AL_DragMgrAvail (IsDragMgrPresent) ...134
AL_ExitCell (AreaName)...128
AL_GetCellColor (AreaName;CellCol;CellRow;ForeColor2;BackColor2) ..85
AL_GetCellEnter (AreaName;CellCol;CellRow;Enterable)...123
AL_GetCellHigh (AreaName;StartPosition;EndPosition)..126
AL_GetCellMod (AreaName) ➞ CellModified ...125
AL_GetCellSel (AreaName; Cell1Col; Cell1Row; Cell2Col; Cell2Row; CellArray) fi ResultCode...151
AL_GetCellStyle (AreaName; CellCol; CellRow; StyleNum; FontName) ...83
AL_GetColLock (AreaName) ➞ Columns ..153
AL_GetColumn (AreaName) ➞ ColumnNum ...150
AL_GetCurrCell (AreaName;ColumnNum;RowNum) ...124
AL_GetDragCol (AreaName;OldColumnNum;NewColumnNum;DestAreaName)..183
AL_GetDragLine (AreaName;OldLineNum;NewLineNum;DestAreaName) ...182
AL_GetDrgArea (AreaName; DestArea; DestProcessID) ...139
AL_GetDrgDstCol (AreaName;DestCol)...143
AL_GetDrgDstRow (AreaName;DestRow) ...142
AL_GetDrgDstTyp (AreaName;DestDataType) ..140
AL_GetDrgSrcCol (AreaName;SourceCol)...139
AL_GetDrgSrcRow (AreaName;SourceRow) ...138
AL_GetLine (AreaName) ➞ SelectedElement ..153
AL_GetPrevCell (AreaName;ColumnNum;RowNum)...124
AL_GetScroll (AreaName;VertScroll;HorizScroll) ...152
AL_GetSelect (AreaName;Array) ➞ ResultCode..150
AL_GetSort (AreaName;Column1; … ;ColumnN)...149
AL_GetWidths (AreaName;ColumnNum;NumWidths;Width1; … ; WidthN)...148
AL_GotoCell (AreaName;ColumnNum;RowNum) ..126
AL_InsArrayNam (AreaName; ColumnNum; NumArrays; Array1; … ; ArrayN) ➞ ErrorCode ...43
AL_InsertArrays (AreaName;ColumnNum;NumArrays;Array1; … ;ArrayN) ➞ ErrorCode...181
AL_InsertFields (AreaName; FileNum; ColumnNum; NumFields; FieldNum1; … ; FieldNumN) ➞ ErrorCode ..100
AL_RemoveArrays (AreaName; ColumnNum; NumArrays)...45
AL_RemoveFields (AreaName; ColumnNum; NumFields)..101
AL_RestoreData (AreaName; RestorePict) ➞ ResultCode ..49
AL_SaveData (AreaName; SavePict) ➞ ResultCode..47
AL_SetArrays (AreaName;ColumnNum;NumArrays;Array1; … ;ArrayN) ➞ ErrorCode...179
AL_SetArraysNam (AreaName; ColumnNum; NumArrays; Array1; … ; ArrayN) ➞ ErrorCode ...41
AL_SetBackClr (AreaName;HdrBackColor1;HdrBackColor2;ListBackColor1;ListBackColor2; FtrBackColor1;FtrBackColor2).....................................73
AL_SetCallbacks (AreaName;EntryStartedProc;EntryFinishedProc) ...117
AL_SetCellColor (AreaName;Cell1Col;Cell1Row;Cell2Col;Cell2Row;CellArray; ForeColor1; ForeColor2;BackColor1;BackColor2)81
AL_SetCellEnter (AreaName;Cell1Col;Cell1Row;Cell2Col;Cell2Row;CellArray;Enterable) ..122
AL_SetCellHigh (AreaName;StartPosition;EndPosition) ..125
AL_SetCellOpts (AreaName; CellSelection; MoveWithData; Optimization) ...65
AL_SetCellSel (AreaName; Cell1Col; Cell1Row; Cell2Col; Cell2Row; CellArray)..84
AL_SetCellStyle (AreaName; Cell1Col; Cell1Row; Cell2Col; Cell2Row; CellArray; StyleNum; FontName) ..79
AL_SetColLock (AreaName;Columns) ...90
AL_SetColOpts (AreaName;AllowColumnResize;ResizeInDuring;AllowColumnLock; HideLastColumns;DisplayPixelWidth;DragColumn;AcceptDrag)62
AL_SetCopyOpts (AreaName;IncludeHiddenCols;FieldDelimiter;RecordDelimiter; FieldWrapper)...68
AL_SetDividers (AreaName;ColDividerPattern;ColDividerColor1;ColDividerColor2; RowDividerPattern;RowDividerColor1;RowDividerColor2).........74
AL_SetDrgDst (AreaName; DestDataType; DstCode1; DstCode2; ... ; DstCode10)..136
AL_SetDrgOpts (AreaName;DragRowWithOptKey;ScrollAreaSize;MultiRowDrag)...137
AL_SetDrgSrc (AreaName; SourceDataType; SrcCode1; SrcCode2; ... ; SrcCode10)..135
AL_SetDropDst (DropAreaName;DstCode1; ... ;DstCode10)...156
AL_SetDropOpts (DropAreaName;AcceptRowDrag;AcceptColumnDrag) ...184
AL_SetEnterable (AreaName;ColumnNum;Enterable;PopupArray; MenuSetReference)..114
AL_SetEntryCtls (AreaName;ColumnNum;ControlType)...121
AL_SetEntryOpts (AreaName;EntryMode;AllowReturn;DisplaySeconds; MoveWithArrows; MapEnterKey) ..119
AL_SetFields (AreaName; FileNum; ColumnNum; NumFields; FieldNum1; … ; FieldNumN) ---> ErrorCode ..99
AL_SetFile (AreaName; FileNum) ➞ ErrorCode..98
AL_SetFilter (AreaName;ColumnNum;EntryFilter) ...116
AL_SetFooters (AreaName; ColumnNum; NumFooters; Footer1; … ; FooterN)..51
AL_SetForeClr (AreaName;ColumnNum;HdrForeColor1;HdrForeColor2;ListForeColor1; ListForeColor2;FtrForeColor1;FtrForeColor2)71
AL_SetFormat (AreaName;ColumnNum;Format;ColumnJust;HeaderJust;FooterJust; UsePictHeight)...52
AL_SetFtrStyle (AreaName;ColumnNum;FontName;Size;StyleNum)..57
AL_SetHdrStyle (AreaName;ColumnNum;FontName;Size;StyleNum) ..56
AL_SetHeaders (AreaName; ColumnNum; NumHeaders; Header1; … ; HeaderN) ..50
AL_SetHeight (AreaName;NumHeaderLines;HeaderHeightPad;NumRowLines; RowHeightPad;NumFooterLines;FooterHeightPad)90
AL_SetLine (AreaName;LineNum)..87
AL_SetMainCalls (AreaName; AreaEnteredProc; AreaExitedProc) ..48
AL_SetMiscOpts (AreaName;HideHeaders;AreaSelected;PostKey;ShowFooters) ...66
AL_SetRowColor (AreaName;RowNum;RowForeColor1;RowForeColor2; RowBackColor1; RowBackColor2)..77
AL_SetRowOpts (AreaName;MultiLines;AllowNoSelection;DragLine;AcceptDrag; MoveWithData;DisableRowHighlight) ...59
AL_SetRowStyle (AreaName;RowNum;StyleNum;FontName) ..75
AL_SetScroll (AreaName;VertScroll;HorizScroll)..88
AL_SetSelect (AreaName;RowsToSelect)..87
AL_SetSort (AreaName;Column1; … ;ColumnN) ...86
AL_SetSortOpts (AreaName;SortInDuring;UserSort;AllowSortEditor;SortEditorPrompt; ShowSortOrder)..69
AL_SetStyle (AreaName;ColumnNum;FontName;Size;StyleNum) ..58
AL_SetSubSelect (AreaName; FirstRecord; NumRecords) ..102
© 1990-1995 Foresight Technology, Inc. All Rights Reserved.

AL_SetWidths (AreaName;ColumnNum;NumWidths;Width1; … ; WidthN) ...51
AL_SetWinLimits (AreaName; EnableResize; MinWidth; MinHeight; MaxWidth; MaxHeight)..91
AL_ShowSortEd (AreaName) ➞ SortDone ..157
AL_SkipCell (AreaName)..127
AL_UpdateArrays (AreaName; UpdateMethod) ...46
AL_UpdateFields (AreaName; UpdateMethod)...101
© 1990-1995 Foresight Technology, Inc. All Rights Reserved.

Index
Symbols
%AL_DropArea 156, 177–178, 182–183

defined 155
%AreaListPro

defined 41

Numerics
4D

PowerMac-native versions 160
4D External Drag Interface Specification

130
4D External Mover 199
4D List 185
4D palette 32, 162

A
AcceptColumnDrag 184
AcceptDrag 178, 182
AcceptRowDrag 184
access codes 131, 135, 156
AL_DragMgrAvail 129

defined 134
AL_ExitCell 108, 114, 118, 127–128, 194

defined 128
AL_GetCellColor 32, 162

defined 85
AL_GetCellEnter

defined 123
AL_GetCellHigh 105

defined 126
AL_GetCellMod 105, 125, 192

defined 125
AL_GetCellSel 36, 147, 163

defined 151
AL_GetCellStyle 33, 162

defined 83
AL_GetColLock 147
defined 153
AL_GetColumn 146–147, 164

defined 150
AL_GetCurrCell 108, 125, 127–128, 192,

194
defined 124

AL_GetDragCol 178–179, 184
defined 183

AL_GetDragLine 179
defined 182

AL_GetDrgArea 132, 195
defined 139

AL_GetDrgDstCol 132
defined 143

AL_GetDrgDstRow 132
defined 142

AL_GetDrgDstTyp 132–133
defined 140

AL_GetDrgSrcCol 131
defined 139

AL_GetDrgSrcRow 131, 195
defined 138

AL_GetLine 147, 154, 186–187
defined 153

AL_GetPrevCell 108
defined 124

AL_GetScroll
defined 152

AL_GetSelect 47, 147, 151, 153, 189–193
defined 150

AL_GetSort 70, 86, 147, 149, 157
defined 149

AL_GetWidths 147–148
defined 148

AL_GotoCell 108, 111–112, 118–119, 194
defined 126

AL_InsArrayNam 27, 44, 159–160, 197
defined 43

AL_InsertArrays 44, 159–160, 177, 181
I-1

Index
defined 181
AL_RemoveArrays 159, 197

defined 45
AL_RestoreData

defined 49
AL_SaveData

defined 47
AL_SetArrays 42, 159–160, 177, 180–181,

197
defined 179

AL_SetArraysNam 27, 43–44, 50, 148, 151,
159–160, 186–191, 193, 197

defined 41
AL_SetBackClr 30, 32

defined 73
AL_SetCallbacks 109–110, 191, 193

defined 117
AL_SetCellColor 32, 82, 85, 162

defined 81
AL_SetCellEnter 123, 164

defined 122
AL_SetCellHigh 105

defined 125
AL_SetCellOpts 33, 35–36, 80, 82, 84, 123,

151, 162–164
AL_SetCellSel 36, 151, 163

defined 84
AL_SetCellStyle 33, 162

defined 79
AL_SetColLock

defined 90
AL_SetColOpts 12, 147, 178, 183

defined 62
AL_SetDrgDst 130, 133

defined 136
AL_SetDrgOpts

defined 137
AL_SetDrgSrc 130, 133, 195

defined 135
AL_SetDropDst 155
defined 156

AL_SetDropOpts 39, 155, 161, 164, 179,
184

defined 184
AL_SetEnterable 107, 110, 126, 190–191,

199
defined 114

AL_SetEntryCtls 106
defined 121

AL_SetEntryOpts 36, 105–106, 163, 189–
191, 193

defined 119
AL_SetFilter 106

defined 116
AL_SetFooters

defined 51
AL_SetForeClr 30, 32

defined 71
AL_SetFormat 30, 40, 121

defined 52
AL_SetFtrStyle 58
AL_SetHeaders 186–191, 193

defined 50
AL_SetHeight 29

defined 90
AL_SetLine 88, 153

defined 87
AL_SetMiscOpts 30, 199

defined 66
AL_SetRowColor 162

defined 77
AL_SetRowOpts 35, 65, 150–151, 163,

177–178, 182, 188–191, 193
AL_SetRowStyle 163

defined 75
AL_SetScroll 35, 149, 153, 163

defined 88
AL_SetSelect 87, 150, 188
I-2

Index
defined 87
AL_SetSort 149

defined 86
AL_SetSortOpts 41, 149, 157

defined 69
AL_SetStyle 59

defined 58
AL_SetWidths 30, 40, 148

defined 51
AL_ShowSortEd 149, 155

defined 157
AL_SkipCell 108, 117, 194

defined 127
AL_UpdateArrays 27, 82, 89, 115, 125,

159–161, 197
defined 46

ALL RECORDS 187–191, 193
AllowColumnLock 147
AllowReturn 105, 120
ALProEvt 43, 139, 145–147, 164–165, 177–

178, 180, 182–183, 188–189, 193,
198

values 145
Area_Refresh 196
AreaList Pro Installer 199
Array 150
ARRAY INTEGER 47, 85, 123, 150–151,

189–193
arrow keys 35–36, 107, 120, 147, 163

scrolling 14
automatic column sizing 40, 50

B
BackColor1 82
BackColor2 82, 85
background color 12, 30, 81, 85, 162
Before phase 32–33, 40–41, 44, 50, 87–90,

115, 127, 135, 162, 179, 188–190
boolean arrays
data entry 121

C
C_BOOLEAN 192
C_LONGINT 109, 111, 192, 194, 198
CalendarSet 195
CALL PROCESS 113, 132, 140, 142–143,

195
callback procedure 32–33, 82, 108, 110,

117, 162, 191–192, 194, 198
compile-time errors 198
redrawing the display 113

CANCEL 188–189
carriage return key 107
CellArray 84, 122, 152
CellModified 125
cells

color 162
dragging 65
optimization 65
selection 35, 147, 163, 198
style 162

CellSelection 65, 84
cell-specific color 85
cell-specific font 83
cell-specific style 83
changing layout pages 133, 197–198
Changing Page 161
checkbox 121

data entry 106
clicks on a column 147
Clipboard 164
clipboard 15
CLOSE WINDOW 113, 197
color 12, 81, 162

background 12, 30, 81, 162
cells 162
I-3

Index
cell-specific 85
foreground 12, 30, 81, 162

Column 86, 149
column dividers 147
column dragging 33, 162
column enterability 114
column locking 90, 147, 153

horizontal scroll position 152
column resizing 46, 147
column sizing 50
column widths 11, 147
ColumnNum 42–43, 59, 114, 116, 121, 124,

127, 148, 150, 181
ColumnNumber 190
Columns 90, 153
command-click 36, 163
compiler

errors 198
run-time error 198

configuration 161, 164
ControlType 121
Copy 164
COPY ARRAY 159–160
copy to clipboard 15
CS_GetDrgDstDay 195
CS_SetDrgDst 195
current layout page 133
currently enterable cell 124, 128
currently selected line 153

D
data entry 105, 119, 189

boolean arrays 121
callback procedures 117
checkbox 106, 121
controlling cursor movement 108
filters 106, 116
invalid data 113
radio buttons 106, 121
restricting 193
skip current cell 127
terminating 108
using callback procedure 108
validation 110, 113, 117, 125, 190–191

Debut 134
DELETE ELEMENT 47
deleting arrays 160
DestArea 139
DestAreaName 179, 182–183
DestCol 143
DestDataType 136, 141
destination area rectangle 137
destination of drag 135–136, 139–140
DestProcessID 140
DestRow 142
discontiguous cells 84, 122, 164
Discontiguous selections 36, 163
DISPLAY SELECTION 198
DisplayPixelWidth 30
DisplaySeconds 106, 120
dividing lines 147
double-click 147, 198
Drag Manager 129, 177

determining if present 134
DragColumn 178
dragging 129, 164, 177, 198

4D External Drag Interface Specifica-
tion 130

access codes 131, 135, 156
AreaList Pro to CalendarSet 195
destination 135–136, 139–140
drag DataType 133
Drag Manager 129, 177
drag partners 135, 156
DropArea 133, 155
getting drag info (obsolete) 182
Macintosh Drag and Drop 129, 177
I-4

Index
multi-page layouts 132
option key 137
options 137
receiver 135, 140
rows 36, 132, 163, 198
source row 138
type of data dragged 140

DragLine 177, 182
DragRowWithOptKey 137
DropArea 39, 133, 155, 161, 177, 184, 198
DstCode 133, 136, 156
During phase 32–33, 40–41, 44, 50, 87–90,

115, 145–146, 162, 179

E
EndPosition 125
Enter key 107, 120
enterability 36, 122–123, 163–164, 190

options 119
setting for a column 114

Enterable 107, 114, 122–123
enterable cell 120
entry filter 116
entry finished callback 82, 112, 117, 125,

198
Entry Method 117
entry started callback 108, 117, 198
EntryFilter 116
EntryFinishedProc 110, 117–118
EntryMethod 109
EntryMode 105, 119, 189
EntryStartedProc 109, 117
ErrorCode 41–42, 44, 180–181
errors

compiler 198
exit callback 82, 108, 110, 112–113, 117,

125, 191, 194, 198
exiting data entry
data entry
exiting 114

ExitMethod 111
External Drag Interface Specification 130
External Mover 199

F
filters 116

data entry 106
font 79, 83, 163

cell-specific 83
FontName 83
footer 11

color 12
FooterHeightPad 91
footers 199

color 30
height 90

ForeColor1 82
ForeColor2 82, 85
foreground color 12, 30, 81, 162

G
GetAreaColumn 165
global variables 152
GOTO AREA 127
goto cell 126

H
HeaderHeightPad 91
headers 11, 13

color 12
height 90
sorting 147

height padding 90
highlight characters 125
horizontal scroll bar 35, 88, 152, 163
I-5

Index
locking 147
HorizScroll 88, 152

I
initiating data entry 105
INSERT ELEMENT 195
inserting arrays 160
insertion point 120, 125
installing

AreaList Pro 199
integer array 152
interprocess arrays 42, 44
interprocess communication 140
interprocess variable 24
interprocess variables 113, 140, 143
invalid data entry 113
invisible button 24, 145
IsDragMgrPresent 134

J
justification 30

K
keyboard type-ahead 36, 163

L
length byte 106
LineNum 87
LIST TO ARRAY 186, 192
local arrays 42, 44
local variable 24
locked columns 90, 147, 152–153

horizontal scroll position 88
M
Macintosh Drag and Drop 129, 177
MapEnterKey 107, 120
memory 66, 106, 150
modified

cell contents 125
MODIFY RECORD 154
MoveWithArrows 107, 120
MoveWithData 33, 65, 82, 123, 162
multi-level sort 86
MultiLine 150
multi-line selection 147, 188
MultiLines 163
multi-page layouts

dragging considerations 132, 137
multiple cell selection 35–36, 163–164

N
NewColumnNum 183
NewLineNum 182
No items in this menu 114
NumColumns 42
NumElements 160
NumFooterLines 91
NumHeaderLines 29, 91
NumRowLines 90–91
NumWidths 148

O
obsolete commands 177
OldColumnNum 183
OldLineNum 182
OPEN WINDOW 113
Optimization 65
Option key 137
Outside call 140, 142–143, 195
I-6

Index
P
palette 81, 85
Pascal string 106
performance issues 40
picture arrays 164
PopupArray 38, 107, 114, 199
popups 112, 199
PostKey 145
PowerMac 160, 167
Precedence for configuration 164
Predefined styles 116
preferences 148
previously enterable cell 124
Proc.Ext 199
process arrays 42, 44
process variable 24

R
radio buttons 121

data entry 106
range checking

maximum string length 106
range of cells 79, 81, 84, 122
receiver of drag 135, 140
redrawing the display 113
resize column widths 147
resizing column widths 11
ResultCode 150, 152
Return key 105, 107, 120, 127
row dragging 36, 65, 80, 132, 163, 198
row height 90
RowBackColor2 32
RowForeColor2 32
RowHeightPad 91
RowNum 124, 127
RowsToSelect 88
S
SAVE RECORD 148
scaled proportionally 37
scaled to fit 37
scroll bars 35, 88, 152, 163, 197
ScrollAreaSize 137
scrolling 14, 40

horizontal scroll bar 152
vertical scroll bar 152

SEARCH 148, 151, 154
SEARCH BY LAYOUT 199
seconds 106
Select All 36, 164
SelectedElement 153
selection 87

cell 84
cells 35, 147, 163, 198
current line 153
multi-line 147, 163, 188
single-line 147

SELECTION TO ARRAY 43, 180, 187–191,
193

setting arrays 177, 197
shift-click 36, 163
ShowFooters 30, 199
single cell selection 35, 163
single click 146
single-line selection mode 147
Size of array 151, 189–194
sort buttons 147
Sort Editor 13, 147, 149, 155, 157
SortDone 157
SortInDuring 41
sorting 66, 147

multi-level 86
Sort Editor 157

source row 138
SourceCol 139
I-7

Index
SourceDataType 135
SourceRow 138
SQL 159–160
SrcCode 135
StartPosition 125–126
StartUp 134
String 54
string length

maximum 106
style 30, 79, 83

cell 162
cell-specific 83
predefined 116

StyleNum 83
styles 13

T
Tab key 107, 127
t-bar cursor 125
terminating data entry 108
time popup 120
Trash can icon

with a DropArea 155
truncated 37
two-dimensional integer array 79, 81, 84,

122, 152
type-ahead scrolling 147

U
UpdateMethod 46
UserSort 70, 149

V
validation 110, 125, 190–191
vertical scroll bar 35, 88, 152, 163
VertScroll 88, 152
W
widths 46, 50, 148

Z
zero element 105
I-8

	Software License and Limited Warranty
	Table of Contents
	Using the AreaList Pro Manual
	Cross-Referencing Format
	Command Lists
	Command Descriptions and Syntax

	About AreaList Pro
	Installing and De-Installing AreaList™ Pro
	Installing AreaList Pro for Macintosh
	Installing AreaList Pro for Macintosh Using the In...
	To Install AreaList Pro into a New Proc.Ext File
	To Add AreaList Pro to a Proc.Ext File or a 4D Str...

	Installing the Mac4DX Version of AreaList Pro
	To install the Power Macintosh version of AreaList...

	Installing the Windows Version of AreaList Pro
	De-Installing AreaList Pro from Macintosh Versions...
	To De-Install AreaList Pro from a Macintosh Proc.e...

	De-Installing the Mac4DX version of AreaList Pro
	De-Installing the Windows version of AreaList Pro

	The AreaList Pro User Interface
	Headers
	Footers
	Column Widths
	Column Locking
	Rows with Multiple Lines of Text
	Color
	Styles
	Sorting
	To change the direction of the sort

	Scrolling
	Selection
	Copy to Clipboard
	Drag and Drop
	To Drag a Row
	To Drag a Column
	Dragging to a Row
	Dragging to a Column
	To Drag a Cell
	Dragging to a Cell

	Enterability
	Initiating Data Entry
	Entering Data
	Data Entry Using Popups
	Moving the Current Entry Cell
	Exiting Data Entry
	Enterability for Fields

	Resizable Windows with AreaList Pro

	Developing with AreaList Pro
	Creating an AreaList Pro object on a Layout
	To configure a variable object as an AreaList Pro ...

	AreaList Pro Object Dimensions
	Creating an %AL_DropArea on a Layout
	Using the AreaList Pro Commands
	Command Descriptions and Syntax
	Causing an AreaList Pro Object’s Script to Execute...
	Developer Alert
	Return Parameters from AreaList Pro Procedures
	Using Pointers with AreaList Pro Commands

	Configuration Commands
	Specifying the Arrays to Display
	Inserting and Deleting Arrays
	Modifying Array Elements Procedurally

	Specifying the Fields to Display
	Using the AreaEntered and AreaExited Callback Proc...
	Executing a Callback Upon Entering an Area
	Executing a Callback Upon Exiting an Area

	Headers
	Footers
	Column Widths
	AreaList Pro Height
	Column Locking
	Rows with Multiple Lines of Text
	Color
	Column, Header, and Footer Colors
	Row-Specific Colors
	Cell-Specific Colors

	Styles
	Column, Header, and Footer Styles
	Row-Specific Styles
	Cell-Specific Styles

	Sorting
	Sort Buttons
	Sort Editor
	Procedural Sorting
	Sorting When Displaying Fields

	Scrolling
	Selection
	Clipboard
	Picture Columns
	Saving and Restoring Configuration Information
	Changing Layout Pages
	Using AreaList Pro on a Resizable Window
	Creating a Resizable AreaList Pro Area

	Performance Issues with the Formatting Commands
	Commands
	%AreaListPro
	AL_SetArraysNam
	AL_InsArrayNam
	AL_RemoveArrays
	AL_UpdateArrays
	AL_SaveData
	AL_SetMainCalls
	AL_RestoreData
	AL_SetHeaders
	AL_SetFooters
	AL_SetWidths
	AL_SetFormat
	AL_SetHdrStyle
	AL_SetFtrStyle
	AL_SetStyle
	AL_SetRowOpts
	AL_SetColOpts
	AL_SetCellOpts
	AL_SetMiscOpts
	AL_SetCopyOpts
	AL_SetSortOpts
	AL_SetForeClr
	AL_SetBackClr
	AL_SetDividers
	AL_SetRowStyle
	AL_SetRowColor
	AL_SetCellStyle
	AL_SetCellColor
	AL_GetCellStyle
	AL_SetCellSel
	AL_GetCellColor
	AL_SetSort
	AL_SetLine
	AL_SetSelect
	AL_SetScroll
	AL_SetColLock
	AL_SetHeight
	AL_SetWinLimits
	AL_DoWinResize

	Field and Record Commands
	Using the Field Display Capability
	Temporary Arrays
	Arrays and Fields
	Fields from a Related One File
	Redraw and Scrolling
	TypeAhead
	Copy rows to the clipboard
	Enterability
	Dragging
	Sorting
	Maximum Number of Records Displayed
	Performance Issues When Displaying Fields

	Commands
	AL_SetFile
	AL_SetFields
	AL_InsertFields
	AL_RemoveFields
	AL_UpdateFields
	AL_SetSubSelect

	Enterability Commands
	Initiating Data Entry
	Entering Data
	Filters
	Maximum Length of a String Exceeded
	Popups

	Moving the Current Entry Cell
	Using Callback Procedures During Data Entry
	Executing a Callback Upon Entering a Cell
	Executing a Callback Upon Leaving a Cell
	Notifying the User of Invalid Data Entry from the ...
	Redrawing the Display from the Callback Procedure

	Exiting Data Entry
	Commands
	AL_SetEnterable
	AL_SetFilter
	AL_SetCallbacks
	AL_SetEntryOpts
	AL_SetEntryCtls
	AL_SetCellEnter
	AL_GetCellEnter
	AL_GetCurrCell
	AL_GetPrevCell
	AL_GetCellMod
	AL_SetCellHigh
	AL_GetCellHigh
	AL_GotoCell
	AL_SkipCell
	AL_ExitCell

	Dragging Commands
	Background
	To install the Macintosh Drag and Drop Extension
	AreaList Pro versions prior to 5.1
	Technical Details of the Dragging Implementation
	What are access “codes”?
	After a drag
	AreaList Pro on Multi-Page Layouts
	Multiple Row Dragging

	Drag DataType
	DropArea
	AL_DragMgrAvail
	AL_SetDrgSrc
	AL_SetDrgDst
	AL_SetDrgOpts
	AL_GetDrgSrcRow
	AL_GetDrgSrcCol
	AL_GetDrgArea
	AL_GetDrgDstTyp
	AL_GetDrgDstRow
	AL_GetDrgDstCol

	User Action Commands
	AreaList Pro’s PostKey
	Determining the User’s Action on an AreaList Pro O...
	Selection
	Sort Order
	Column Widths
	Column Information
	Commands
	AL_GetWidths
	AL_GetSort
	AL_GetColumn
	AL_GetSelect
	AL_GetCellSel
	AL_GetScroll
	AL_GetColLock
	AL_GetLine

	Utility Commands
	DropArea
	DropArea Objects on a MultiPage Layout

	Sort Editor
	Commands
	%AL_DropArea
	AL_SetDropDst
	AL_ShowSortEd

	Changes from v4 to v5
	Array Setup
	Setting Columns in AreaList Pro
	Inserting and Deleting Arrays
	Modifying Elements Procedurally
	Responding to User Actions on an AreaList Pro Obje...
	Changing Pages
	The AreaList Pro Drop Area

	Configuration
	Headers
	Footers
	Column Widths
	Column Locking
	Rows with Multiple Lines of Text
	Color
	Styles
	Sorting
	Scrolling
	Selection
	Copy to Clipboard
	Drag and Drop
	Using Picture Arrays
	Saving and Restoring Configuration Information
	Enterability
	Precedence for configuration
	New Return Value for AL_GetColumn Command

	What’s New in AreaList Pro v5 and v5.1
	What’s New in AreaList Pro v5.0
	What’s New in AreaList Pro v5.1

	What’s New in AreaList™ Pro v6
	Displaying Fields
	Scrolling
	TypeAhead
	Copy rows to the clipboard
	Sorting
	Enterability

	Multiple Row Dragging
	Cell Drag and Drop
	PowerMac Native
	Support for MenuSet™ Menus
	Increased column capacity
	Invisible Button
	AreaList Pro’s PostKey

	Enhance showing/hiding of scroll bars
	Maximum Number of Draggable Objects
	Two-Dimension Arrays
	Disable highlighting of selected rows
	Wrap fields when copying to the clipboard
	Callback Procedures for Entering or Exiting an Are...
	Using AreaList Pro on a Resizable Window

	Obsolete Commands
	Setting Arrays
	Obsolete Dragging Commands
	Row Dragging
	Column Dragging
	%AL_DropArea
	DropArea Objects on a MultiPage Layout

	Commands
	AL_SetArrays
	AL_InsertArrays
	AL_GetDragLine
	AL_GetDragCol
	AL_SetDropOpts

	Examples
	Example 1 — A Simple One-Column List
	Example 2 — Displaying Headers on the List
	Example 3 — Displaying Data from a File
	Example 4 — Selecting Multiple Lines
	Example 5 — Allowing Data Entry
	Example 6 — Restricting Data Entry to a Column
	Example 7 — Validating Data Entry
	Example 8 — Prohibiting Data Entry to a Specific C...
	Example 9 — Dragging from AreaList Pro to Calendar...

	Troubleshooting
	Garbage characters are displayed for numeric array...
	AreaList Pro is not being updated properly
	AreaList Pro’s scroll bars show up on other pages
	AreaList Pro reports wrong drop object after Drag ...
	AreaList Pro does not respond to single or double ...
	AreaList Pro user event code runs more than once
	Row dragging doesn’t work.
	A compiler run-time error occurs with a message th...
	The compiler generates warnings that parameters ar...
	The footers for an AreaList Pro object aren’t bein...
	An AreaList Pro popup menu doesn’t display the cor...
	AreaList Pro doesn’t display correctly, or crashes...
	My columns appear blank when displaying fields in ...
	Other

	AreaList™ Pro Demo
	Technical Support
	Electronic Mail
	World Wide Web
	FAX
	Telephone

	About Foresight Technology
	Opportunities

	 Command Reference — by Chapter
	 Command Reference — Alphabetical

